Nanolaser Device Detects Cancer in Single Cells

January 24, 2006
Nanolaser Device Detects Cancer in Single Cells
Single cells can flow through this nanoscale biocavity laser, enabling malignant cells to be differentiated from normal cells. Courtesy of Sandia National Laboratory.

Using an ultrafast, nanoscale semiconductor laser, investigators at Sandia National Laboratories in New Mexico, have discovered a way of rapidly distinguishing between malignant and normal cells. Moreover, this new technique has the potential of detecting cancer at a very early stage, a development that could change profoundly the way cancer is diagnosed and treated.

Reporting its work in the journal Biomedical Microdevices, a team of researchers led by Paul Gourley, Ph.D., described the methods it used to construct a device that can flow cells one at a time past an ultrafast laser, and how this device revealed that malignant cells have a characteristic optical response that differs from that of a normal cell. This response, the researchers found, arises from the fact that mitochondria, the internal organelles that produce a cell’s energy, are scattered in a chaotic, unorganized manner in malignant cells, while they form organized networks in healthy cells. This difference produces a marked change in the way that malignant cells scatter laser light.

The researchers were then able to show that they could measure this change when flowing individual cells through a “biocavity laser” that Gourley’s group had previously developed. The change shows up as a difference in the fluorescent signal they observed at two different frequencies of light. The investigators note that they are now studying other cellular components to determine if these intracellular structures also have laser-detectable differences between malignant and normal cells.

This work is detailed in a paper titled, “Ultrafast nanolaser flow device for detecting cancer in single cells.” An investigator from the University of California, San Diego, also participated in this study.

An abstract is available through PubMed.

Source: National Cancer Institute

Explore further: Study exposes key requirement for regulatory T cell function

Related Stories

Study exposes key requirement for regulatory T cell function

September 22, 2016

A Ludwig Cancer Research study published online September 5th in Nature Immunology illuminates a key requirement for the function of regulatory T cells—immune cells that play a critical role in many biological processes, ...

Nanoparticle drug cocktail could help treat lethal cancers

September 16, 2016

Cancer treatments that mobilize the body's immune system to fight the disease have generated a lot of excitement in the past few years. One form of immunotherapy called checkpoint blockade is especially promising. But while ...

Receptor tyrosine kinases control mechanosensors

September 21, 2016

Researchers at the Mechanobiology Institute (MBI) at the National University of Singapore (NUS) have identified a role of receptor tyrosine kinases in the regulation of the cellular mechanosensory machinery, which has relevance ...

Recommended for you

Indonesia struggles to tap volcano power

September 25, 2016

Columns of steam shoot from the ground at an Indonesian power plant sitting in the shadow of an active volcano, as energy is tapped from the red-hot underbelly of the archipelago.

Snapchat introduces video-catching sunglasses

September 24, 2016

Vanishing message service Snapchat announced Saturday it will launch a line of video-catching sunglasses, a spin on Glass eyewear abandoned by Google more than a year ago.

Pluto's 'heart' sheds light on a possible buried ocean

September 23, 2016

Ever since NASA's New Horizons spacecraft flew by Pluto last year, evidence has been mounting that the dwarf planet may have a liquid ocean beneath its icy shell. Now, by modeling the impact dynamics that created a massive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.