Novel 'Dual-Grating Assisted Directional Coupler' Developed For Nanophotonics

Jan 30, 2006

A collaborative research project between Innos (UK R&D company) and the universities of Surrey, Southampton and the Politecnico di Bari in Italy has developed a novel method for coupling light from an optical fibre to 200nm thick silicon waveguides in optical communications. The project has demonstrated the highest recorded coupling efficiency of 55%.

"There have been several published methods of achieving an effective coupling in theory, however no grating-based coupler has achieved as high a demonstrated efficiency as the work we have completed with Innos, Southampton University and Politecnico di Bari. It is also one of the best overall published results by any other method to date," says Research Fellow at the Advanced Technology Institute at the University of Surrey, Dr Goran Masanovic.

With the ever-decreasing size of communications devices optical technologies are at nanometre scale. The control and manipulation of light at this size (nanophotonics) can affect polarisation, loss and coupling issues. One of the key issues to be solved in nanophotonics is the coupling of light between an optical fibre and a semiconductor waveguide. Due to the difference in thicknesses and refractive indices between the two structures a direct coupling currently results in a loss as high as 20dB.

Coupling further becomes a problem as optic fibres typically have a core dimension of 9µm and the dimensions of silicon devices are often reduced to improve packing density and improve the performance of the photonic circuit. This often results in cross-sectional dimensions of silicon-based waveguides of ~1µm or less.

Commenting on the project, Sales and Marketing Director from Innos, Dr Alec Reader stated, "Advances such as fast silicon modulators and silicon lasers in silicon photonics has sparked interest recently not only from academia but from world-leading companies as devices are reduced in size. Coupling is just one roadblock to producing smaller devices, and we are pleased to have helped produce such an impressive proven result. We are expecting to work with the University of Surrey again on future European and EPSRC-funded projects."

Source: University of Surrey

Explore further: Laser technology advances microchip production

Related Stories

Researchers exploring spintronics in graphene

May 06, 2015

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

High-tech sensors help kids keep eye on aging parents

May 05, 2015

Each time 81-year-old Bill Dworsky or his 80-year-old wife Dorothy opens the refrigerator, closes the bathroom door or lifts the lid on a pill container, tiny sensors in their San Francisco home make notes ...

Two-dimensional material seems to disappear, but doesn't

May 05, 2015

(Phys.org)—When exposed to air, a luminescent 2D material called molybdenum telluride (MoTe2) appears to decompose within a couple days, losing its optical contrast and becoming virtually transparent. But when s ...

Ultra-sensitive sensor detects individual electrons

Apr 23, 2015

A Spanish-led team of European researchers at the University of Cambridge has created an electronic device so accurate that it can detect the charge of a single electron in less than one microsecond. It has ...

Recommended for you

Gamma ray camera may help with Fukushima decontamination

May 20, 2015

Japanese researchers have significantly improved the performance of a gamma ray-imaging "Compton" camera. The new technology has potential applications in scientific research, medical treatment and environmental ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.