Astronomers shed surprising light on our galaxy's black hole

Jan 10, 2006

In the most comprehensive study of Sagittarius A* (Sgr A*), the enigmatic supermassive black hole in the center of the Milky Way Galaxy, astronomers -- using nine ground and space-based telescopes including the Hubble Space Telescope and the XMM-Newton X-ray Observatory -- have discovered that Sgr A* produces rapid flares close to the innermost region of the black hole in many different wavelengths and that these emissions go up and down together.

This insight into the frequent bursts of radiation observed shooting off the black hole like firecrackers -- similar to solar flares -- will help scientists better understand the dynamics of Sgr A* and the source of its flares.

Farhad Yusef-Zadeh, professor of physics and astronomy at Northwestern University, who led a team of 11 astronomers from around the world in the study of Sgr A*, presented the team's results at a press conference today (Jan. 10) at the American Astronomical Society meeting in Washington, D.C.

"We observed that the less energetic infrared flares occur simultaneously with the more energetic X-ray flares as well the submillimeter flares," said Yusef-Zadeh. "From this, we infer that the particles that are accelerated near the black hole give rise to X-ray, infrared and submillimeter emission. In addition, not all of the material that approaches the black hole gets sucked in. Some of the material may be ejected from the vicinity of the central black hole or event horizon. Our observations hint that these flares have enough energy to escape from the closest confines of the supermassive black hole's sphere of influence."

Yusef-Zadeh and his team observed Sgr A* during two four-day periods in 2004, one in March and one in September. (2004 marked the 30th anniversary of the discovery of Sgr A*, which has a mass equivalent to 3.6 million Suns and is located in the Sagittarius constellation.) The campaign captured data across a wide spectrum, including radio, millimeter, submillimeter, infrared, X-ray and soft gamma ray wavelengths.

The astronomers also determined that the real engine of the flare activity is in the infrared wavelength. Using observations from Hubble's Near-Infrared Camera and Multi-Object Spectrometer, they found infrared activity 40 percent of the time, more than was observed at any other wavelength.

"This is not something we expected," said Yusef-Zadeh. "Other black holes in other galaxies don't show this flare activity. We believe it is the dynamics of the captured material -- very close to the event horizon of the black hole -- that produces the flares. And the flares are fluctuating at low levels, like flickers. The flare radiation results from fast-moving materials in the innermost region of the black hole. It's a way of life for Sgr A*, this frequent low level of activity."

Because flares are variable and not constant, the study required a large number of telescopes devoted to studying flare activity simultaneously. The space-based telescopes used in this observation campaign were the Hubble Space Telescope, the XMM-Newton X-ray Observatory and the International Gamma-Ray Astrophysics Laboratory (INTEGRAL). The ground telescopes used were Very Large Array (VLA) of the National Radio Astronomy Observatory; Caltech Submillimeter Observatory (CSO); Submillimeter Telescope (SMT); Nobeyama Array (NMA); Berkeley Illinois Maryland Array (BIMA); and Australian Telescope Compact Array (ATCA).

Source: Northwestern University

Explore further: Spacecraft closing in on Pluto hits speed bump, but recovers

Related Stories

NASA missions monitor a waking black hole

17 hours ago

NASA's Swift satellite detected a rising tide of high-energy X-rays from the constellation Cygnus on June 15, just before 2:32 p.m. EDT. About 10 minutes later, the Japanese experiment on the International ...

Monster black hole wakes up after 26 years

Jun 25, 2015

Over the past week, ESA's Integral satellite has been observing an exceptional outburst of high-energy light produced by a black hole that is devouring material from its stellar companion.

Strong evidence for coronal heating theory presented

Apr 28, 2015

The Sun's surface is blisteringly hot at 6,000 kelvins or 10,340 degrees Fahrenheit—but its atmosphere is another 300 times hotter. This has led to an enduring mystery for those who study the Sun: What ...

Diagnosing a black hole flare

May 07, 2012

(Phys.org) -- Black holes can come in a wide range of masses. Some, with only about one solar mass, result from the supernova death of a massive star, while those at the center of galaxies (called supermassive ...

Recommended for you

What is the newest planet?

4 hours ago

With astronomers discovering new planets and other celestial objects all the time, you may be wondering what the newest planet to be discovered is. Well, that depends on your frame of reference. If we are ...

Catching Earth at aphelion

5 hours ago

Do you feel a little… distant today? The day after the 4th of July weekend brings with it the promise of barbecue leftovers and discount fireworks. It also sees our fair planet at aphelion, or its farthest ...

Opportunity's 7th Mars winter to include new study area

5 hours ago

Operators of NASA's Mars Exploration Rover Opportunity plan to drive the rover into a valley this month where Opportunity will be active through the long-lived rover's seventh Martian winter, examining outcrops ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.