Faces have a special place in the brain

December 26, 2005
Faces have a special place in the brain
Image: Do you recognize this face? Researchers at the McGovern Institute have made inroads into understanding what happens in the brain when a person recognizes a face. No word on whether a face drawn in the snow counts. (Photo / Donna Coveney)

Are you tempted to trade in last year's digital camera for a newer model with even more megapixels? Researchers who make images of the human brain have the same obsession with increasing their pixel count, which increases the sharpness (or "spatial resolution") of their images. And improvements in spatial resolution are happening as fast in brain imaging research as they are in digital camera technology.

Nancy Kanwisher and colleagues at the McGovern Institute for Brain Research at MIT are now using their higher-resolution scans to produce much more detailed images of the brain than were possible just a couple years ago. Just as "hi-def" TV shows clearer views of a football game, these finely grained images are providing new answers to some very old questions in brain research.

One such question hinges on whether the brain is comprised of highly specialized parts, each optimized to conduct a single, very specific function. Or is it instead a general-purpose device that handles many tasks but specializes in none?

Using the higher-resolution scans, the Kanwisher team now provides some of the strongest evidence ever reported for extreme specialization. Their study appeared in the Nov. 23 issue of The Journal of Neuroscience.

The study focuses on face recognition, long considered an example of brain specialization. In the 1990s, researchers including Kanwisher identified a region known as the fusiform face area (FFA) as a potential brain center for face recognition. They pointed to evidence from brain-imaging experiments, and to the fact that people with damage to this brain region cannot recognize faces, even those of their family and closest friends.

However, more recent brain-imaging experiments have challenged this claimed specialization by showing that this region also responds strongly when people see images of bodies and body parts, not just faces. The new study now answers this challenge and supports the original specialization theory.

The researchers suspected that the strong response of the face area to both faces and bodies might result from the blurring together of two distinct but neighboring brain regions that are too close together to distinguish at standard scanning resolutions.

To test this idea, they increased the resolution of their images (like increasing the megapixels on a digital camera) ten-fold to get sharper images of brain function. Indeed, at this higher resolution they could clearly distinguish two neighboring regions. One was primarily active when people saw faces (not bodies), and the other when people saw bodies (not faces).

This finding supports the original claim that the face area is in fact dedicated exclusively to face processing. The results further demonstrate a similar degree of specialization for the new "body region" next door.

Kanwisher is the Ellen Swallow Richards Professor of Cognitive Neuroscience. Her colleagues on this work are Rebecca Frye Schwarzlose, a graduate student in brain and cognitive sciences, and Christopher Baker, a postdoctoral researcher in the department.

The research was supported by the National Institutes of Health, the National Center for Research Resources, the Mind Institute, and the National Science Foundation's Graduate Research Fellowship Program.

Source: MIT (by Cathryn M. Delude)

Explore further: Marks on 3.4-million-year-old bones not due to trampling, analysis confirms

Related Stories

What neuroscience can learn from computer science

August 10, 2015

What do computers and brains have in common? Computers are made to solve the same problems that brains solve. Computers, however, rely on a drastically different hardware, which makes them good at different kinds of problem ...

Belgrade researchers view art as self-organization process

June 26, 2015

How do you tell an original from a fake original? Two Belgrade researchers said they have a method that does not need any prior knowledge on the originality of the work of art. The authors' method is illustrated by recognizing ...

Making sense of our evolution

July 13, 2015

The science about our our special senses - vision, smell, hearing and taste - offers fascinating and unique perspectives on our evolution.

'Straintronic spin neuron' may greatly improve neural computing

July 8, 2015

(Phys.org)—Researchers have proposed a new type of artificial neuron called a "straintronic spin neuron" that could serve as the basic unit of artificial neural networks—systems modeled on human brains that have the ability ...

Recommended for you

Brazilian wasp venom kills cancer cells by opening them up

September 1, 2015

The social wasp Polybia paulista protects itself against predators by producing venom known to contain a powerful cancer-fighting ingredient. A Biophysical Journal study published September 1 reveals exactly how the venom's ...

Water heals a bioplastic

September 1, 2015

A drop of water self-heals a multiphase polymer derived from the genetic code of squid ring teeth, which may someday extend the life of medical implants, fiber-optic cables and other hard to repair in place objects, according ...

ATLAS and CMS experiments shed light on Higgs properties

September 1, 2015

Three years after the announcement of the discovery of a new particle, the so-called Higgs boson, the ATLAS and CMS Collaborations present for the first time combined measurements of many of its properties, at the third annual ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.