SMART-1 uses new imaging technique in lunar orbit

December 23, 2005
SMART-1 uses new imaging technique in lunar orbit
Image: The AMIE camera on board SMART-1 has three fixed-mounted filters which see the Moon in different colour bands. The figure shows four consecutive images taken by AMIE from left to right. The fixed filters are indicated by coloured frames. The images, taken only a few seconds apart, show how the surface is moving through the different filters. Credits: AMIE Team

ESA’s SMART-1 spacecraft has been surveying the Moon’s surface in visible and near-infrared light using a new technique, never before tried in lunar orbit.

For the last few months, the Advanced Moon Imaging Experiment (AMIE) on board SMART-1, has been opening new ground by attempting multi-spectral imaging in the ‘push-broom’ mode. This technique is particularly suited to colour imaging of the lunar surface. (Note that ‘colour imaging’ here does not mean natural colour, the colour bands of the AMIE filters are in the infrared region and are selected such that the intensity of the iron absorption line can be determined from brightness ratios of the images.)

In this mode, AMIE takes images along a line on the Moon’s surface perpendicular to the ground track of the spacecraft.

It relies on the orbital motion of the spacecraft to reposition it as it records a sequence of images known as an ‘image swath’.

The AMIE camera on board SMART-1 has fixed-mounted filters which see the Moon in different colour bands. The figure shows four consecutive images taken by AMIE from left to right. The fixed filters are indicated by coloured frames.

The images, taken only a few seconds apart, show how the surface is moving through the different filters. The spacecraft is moving over the Moon’s surface at a speed of more than a kilometre per second!

SMART-1 uses new imaging technique in lunar orbit

By combining images showing the same feature on the Moon as seen through different filters, colour information can be obtained. This allows to study the mineralogical composition on the lunar surface, which in turn lets scientists deduce details of the formation of our celestial companion.

Whereas the multi-spectral camera aboard the US Clementine mission had constant illumination conditions, SMART-1's orbit will offer different viewing angles. AMIE's views correlated with Clementine data of the same lunar areas will allow scientists to better interpret such spectral data.

Source: ESA

Explore further: Is Hawking any closer to solving the puzzle of black holes?

Related Stories

Gold-diamond nanodevice for hyperlocalised cancer therapy

July 31, 2015

Precise targeting biological molecules, such as cancer cells, for treatment is a challenge, due to their sheer size. Now ,Taiwanese scientists have proposed an advanced solution, based on a novel combination of previously ...

Inside Imhotep

July 21, 2015

Imhotep is located close to the comet's equator and is relatively flat compared to the overall shape of the nucleus. It caught the attention of scientists on the approach to the comet with its broad smooth area, covering ...

Recommended for you

Long-sought chiral anomaly detected in crystalline material

September 3, 2015

A study by Princeton researchers presents evidence for a long-sought phenomenon—first theorized in the 1960s and predicted to be found in crystals in 1983—called the "chiral anomaly" in a metallic compound of sodium and ...

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.