SMART-1 uses new imaging technique in lunar orbit

Dec 23, 2005
SMART-1 uses new imaging technique in lunar orbit
Image: The AMIE camera on board SMART-1 has three fixed-mounted filters which see the Moon in different colour bands. The figure shows four consecutive images taken by AMIE from left to right. The fixed filters are indicated by coloured frames. The images, taken only a few seconds apart, show how the surface is moving through the different filters. Credits: AMIE Team

ESA’s SMART-1 spacecraft has been surveying the Moon’s surface in visible and near-infrared light using a new technique, never before tried in lunar orbit.

For the last few months, the Advanced Moon Imaging Experiment (AMIE) on board SMART-1, has been opening new ground by attempting multi-spectral imaging in the ‘push-broom’ mode. This technique is particularly suited to colour imaging of the lunar surface. (Note that ‘colour imaging’ here does not mean natural colour, the colour bands of the AMIE filters are in the infrared region and are selected such that the intensity of the iron absorption line can be determined from brightness ratios of the images.)

In this mode, AMIE takes images along a line on the Moon’s surface perpendicular to the ground track of the spacecraft.

It relies on the orbital motion of the spacecraft to reposition it as it records a sequence of images known as an ‘image swath’.

The AMIE camera on board SMART-1 has fixed-mounted filters which see the Moon in different colour bands. The figure shows four consecutive images taken by AMIE from left to right. The fixed filters are indicated by coloured frames.

The images, taken only a few seconds apart, show how the surface is moving through the different filters. The spacecraft is moving over the Moon’s surface at a speed of more than a kilometre per second!

SMART-1 uses new imaging technique in lunar orbit

By combining images showing the same feature on the Moon as seen through different filters, colour information can be obtained. This allows to study the mineralogical composition on the lunar surface, which in turn lets scientists deduce details of the formation of our celestial companion.

Whereas the multi-spectral camera aboard the US Clementine mission had constant illumination conditions, SMART-1's orbit will offer different viewing angles. AMIE's views correlated with Clementine data of the same lunar areas will allow scientists to better interpret such spectral data.

Source: ESA

Explore further: Short, sharp shocks let slip the stories of supernovae

Related Stories

Impact crater or supervolcano caldera?

May 21, 2015

At first glance, the region covered by this latest Mars Express image release appears to be pockmarked with impact craters. But the largest structure among them may hold a rather explosive secret: it could ...

Mapping lunar landscapes in panorama

May 15, 2015

The Camera Pointing System (CPS) is a sophisticated tool capable of controlling a camera's movement with precision as well as protecting the camera under extreme conditions.

Image: Chaos on watery Europa

May 11, 2015

Jupiter's moon Europa is brimming with water. Although it is thought to be mostly made up of rocky material, the moon is wrapped in a thick layer of water – some frozen to form an icy crust, some potentially ...

Chemists create self-healing, luminescent wonder gels

May 05, 2015

Chemists from Trinity College Dublin followed their own unique recipe to cook up a breakthrough that could have significant applications in skin graft operations and in protecting valuable electronics and ...

Nepal earthquake on the radar

Apr 30, 2015

On 25 April, a 7.8-magnitude earthquake struck Nepal, claiming over 5000 lives and affecting millions of people. Satellite images are being used to support emergency aid organisations, while geo-scientists ...

Recommended for you

How bad can solar storms get?

17 hours ago

Our sun regularly pelts the Earth with all kinds of radiation and charged particles. How bad can these solar storms get?

Mars rover's ChemCam instrument gets sharper vision

17 hours ago

NASA's Mars Curiosity Rover's "ChemCam" instrument just got a major capability fix, as Los Alamos National Laboratory scientists uploaded a software repair for the auto-focus system on the instrument.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.