'Robosnail' crawls up vertical walls

December 19, 2005
'Robosnail' crawls up vertical walls

A team of scientists from the Massachusetts Institute of Technology has developed a robotic snail that can crawl on vertical walls and traverse ceilings. ‘Robosnail’ was developed to explore and demonstrate mathematical theories to explain a snail’s movement and ability to adhere to walls at all angles.

Image copyright: MIT/Brian Chan

While the creation of the robotic snail was experimental, the developers hope it will eventually find applications in the robotics industry, Nature News has reported.

'Robosnail' crawls up vertical walls
Image copyright: MIT/Brian Chan

In order to propel itself, a terrestrial snail utilises the contracting ability of its lone foot. This foot is glued to the surface by way of a sticky slime secreted by the snail. The snail contracts its foot muscle from behind, pushing the rest of it forward. The film of slime keeps the snail glued to the wall and prevents it from sliding back. As the compression reaches the front of the foot, the snail stretches out and moves slightly ahead of its original position. Thus the snail is able to move slowly ahead at any angle.

The engineers simulated this process. They created an artificial gastropod with five movable segments on its underside. Each segment was moved along a track on the mechanical mollusk’s body. After all these segments moved, the entire body of the robot snail also moved forward and each segment returned to its original position. Robosnail was then tested on a tilting platform coated with 1.5 millimetre-thick layer of slime made from Laponite. When the team increased the gradient of the platform, the snail continued its movement - even when upside down. The engineers published their findings in the November issue of Physics of Fluids.

The team has also developed mathematical theories to determine the optimum slime and weight levels for mechanical snails. These factors are vital to determine Robosnail’s ability to stay glued to its surface. Anette Hoso, the lead engineer of the Robosnail team, says the next generation of robotic snails will be faster and easier to manipulate.

Reference:
Chan B., Balmforth N. J., Hosoi A. E., et al. Phys. Fluids, 17. 113101 (2005).

Copyright 2005 PhysOrg.com

Explore further: Do snails need their slime trails to move ahead? It's a sticky question

Related Stories

Recommended for you

Smart home heating and cooling

August 28, 2015

Smart temperature-control devices—such as thermostats that learn and adjust to pre-programmed temperatures—are poised to increase comfort and save energy in homes.

Research advances on transplant ward pathogen

August 28, 2015

The fungus Cryptococcus causes meningitis, a brain disease that kills about 1 million people each year—mainly those with impaired immune systems due to AIDS, cancer treatment or an organ transplant. It's difficult to treat ...

Smallest 3-D camera offers brain surgery innovation

August 28, 2015

To operate on the brain, doctors need to see fine details on a small scale. A tiny camera that could produce 3-D images from inside the brain would help surgeons see more intricacies of the tissue they are handling and lead ...

Fractals patterns in a drummer's music

August 28, 2015

Fractal patterns are profoundly human – at least in music. This is one of the findings of a team headed by researchers from the Max Planck Institute for Dynamics and Self-Organization in Göttingen and Harvard University ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.