Yale scientists map cell signaling network

November 30, 2005

Yale University scientists have mapped, for the first time, the proteins and kinase signaling network that control how cells of higher organisms operate.

The researchers said their study is a breakthrough in understanding how proteins operate in different cell types under the control of master regulator molecules called protein kinases.

Although protein kinases are already important targets of cancer drugs, until recently it has been difficult to identify the proteins regulated by the kinases.

Led by Michael Snyder, a professor of molecular, cellular and developmental biology, the researchers focused on the expression and relationship between proteins of the yeast cell "proteome," or the proteins that are active in a cell.

Protein kinases act as regulator switches and modify their target proteins by adding a phosphate group to them. The process, called "phosphorylation," results in altered activity of the phosphorylated protein. It is estimated 30 percent of all proteins are regulated by that process.

The research is explained in this week's issue of the journal Nature.

Copyright 2005 by United Press International

Explore further: Bacterial protein can help convert stem cells into neurons

Related Stories

Bacterial protein can help convert stem cells into neurons

November 19, 2015

As the recipe book for turning stem cells into other types of cells keeps growing larger, the search for the perfect, therapeutically relevant blend of differentiation factors is revealing some interesting biology. A study ...

Sensory illusion causes cells to self-destruct

November 19, 2015

Magic tricks work because they take advantage of the brain's sensory assumptions, tricking audiences into seeing phantoms or overlooking sleights of hand. Now a team of UC San Francisco researchers has discovered that even ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.