Engineers Make Standardized Bulk Synthesis of Nanowires Possible

Nov 23, 2005

A team of Yale scientists have demonstrated a method to understand effective synthesis of semiconductor nanowires (NWs) for both their quality and quantity, according to a report published in the journal Nanotechnology.

Graduate student Eric Stern in the department of biomedical engineering along with his colleague Guosheng Cheng, associate research scientist in electrical engineering systematically varied and tested parameters for producing GaN NWs using an optical lithographic method as a template for testing characteristics of the NWs.

A nanowire is an ultra-miniaturized cylindrical semiconductor, as small as 1 to 100 nanometers in diameter, and extending as long as a millimeter — or 10,000 times its thickness. One nanometer is approximately a 25-millionth of an inch. GaN was chosen for these experiments as a material commonly employed in synthesis of semiconductors.

Development of reliable NW fabrication will allow the exploration of the next steps in semiconductor miniaturization. This reported technology produces ten-times the number of NWs as previous technology and sets parameters for standardization of NWs.

“This brings nanowires to an interface with the rest of the world of semiconductor research,” said Stern. “Until this point, the greatest hurdle for the technology has been the inability to produce more than individual nanowires and to have statistically reproducible synthesis so that the properties of nanowires can be explored.”

Their study also demonstrated the proof-of-principle that the NWs act as scaled FETs (field effect transistors), the technology commonly used in microelectronics.

Other authors from the faculty of engineering and the department of physics at Yale include, senior author M. A. Reed, and E. Cimpoiasu, S. Guthrie , J. Klemic, I, Kretzschmar, E. Steinlauf, D. Turner-Evans, E. Bromfield, J. Hyland, R. Koudelka, T.Boone, M. Young, A. Sanders, R Munden, T. Lee and D. Rutenberg; author R. Klie is from Brookhaven National Laboratory. This research was partially supported by DARPA under SPAWAR , ARO, AFOSR, NASA, the Department of Homeland Security, and the National Science Foundation.

Citation: Nanotechnology 16(12): 2941-2953 (December 2005). Also available online.

Source: Yale University

Explore further: Project uses crowd computing to improve water filtration

Related Stories

Recommended for you

Project uses crowd computing to improve water filtration

1 hour ago

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

Engineering the world's smallest nanocrystal

5 hours ago

In the natural world, proteins use the process of biomineralization to incorporate metallic elements into tissues, using it to create diverse materials such as seashells, teeth, and bones. However, the way ...

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.