Scientists discover how crops use the length of the day to decide when to flower

November 14, 2005

Scientists at the John Innes Centre (JIC) [1] in Norwich, UK, report today a breakthrough in understanding how crop plants use daylength to ensure they flower at the right time of year. In an article published in the international journal Science, they describe a gene that controls how barley reacts to the length of the day and thus controls when it flowers.

Most plants flower at a particular time of the year and researchers have known for a long time that plants use cues from their environment to control when they flower. Many crops, including barley, react to the length of the day and use this to determine their flowering time.

“Different varieties of barley (and other crops) respond to daylength in different ways and this has been used to breed varieties adapted to grow in different farming environments” said Dr David Laurie (Project Leader at JIC). “Our result is exciting because for the first time we have identified the gene (called Ppd-H1) [2] that controls this very important response and now understand how plants monitor daylength. This should help breeders who are breeding new varieties for new environments and changing agricultural conditions – caused by global climate change.”

Some barley varieties respond very quickly to the lengthening days in spring and so flower early in the summer. Others respond much more slowly and flower later. Early flowering is an advantage in places where the summers are hot and dry, such as the Mediterranean, because the plants can complete their life cycle before they are exposed to the stresses of high summer. In places like England, where the summers are cool and wet, late flowering is an advantage because the longer growing period allows the crops to deliver higher yields.

“Now we have identified the gene we will be able to find out how many versions of this gene there are in barley and which environments they match”, said Dr Laurie. “This will give us a better picture of the history of our crops and help us understand how crops have been bred for different environments around the world. Our studies suggest that the same gene may be important in wheat and rice. If this is true, then it will prove to be a gene that has been very influential in the process of domesticating wild plants to bring them into agriculture."

Source: John Innes Centre

Explore further: Unlocking the rice immune system

Related Stories

Unlocking the rice immune system

July 24, 2015

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team of researchers led by scientists with the U.S. Department of Energy ...

Scientists create low-methane rice

July 22, 2015

Scientists said Wednesday they had created a rice variety with starchier grains that emits less methane, a step towards the twin goals of feeding more people and curbing global warming.

RNA insecticide could target specific pests

July 21, 2015

A novel insecticide targets a specific gene in a pest, killing only that bug species on crops and avoiding collateral damage to beneficial insects caused by today's pesticides.

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.