Reliable to the nanometer

November 10, 2005

Small fault – major impact. Disruptions to production are often caused by electronic faults. They arise because no reliable measurement and testing methods exist for the ever-smaller dimensions of microchip components. Material tests for the nanocosmos provide a solution.

Microelectronic components are shrinking from one generation to the next. A problem exists, however, in that the material used often behaves quite differently in the micro- or nanocosmos than in the macroscopic world. Hardly any reliable data exists for this environment. In order to assess service life and quality, established techniques need to be combined with innovative concepts. One example is nanoDAC, a testing method developed by scientists from the Fraunhofer Institute for Reliability and Microintegration IZM in Berlin.

DAC stands for deformation analysis through correlation methods, and analyses materials at the nano- to micro-level. Up to now it has mainly been used in electronic assembly and connection technology to test solder joints, find cracks in PCB material or identify internal stresses in micromechanical actuators and sensors. “The significance of these tiny components is often underestimated,” insists IZM head of department Bernd Michel. “A solder point or a small sensor does not cost much, so why go to all the effort of testing? If they fail, however, they can cause heavy financial losses.”

At the heart of the system is an atomic force and scanning electron microscope that takes pictures of materials under various loads. A software program makes it possible to reproduce an almost atom-precise image of the sample and its faults. “Images of the critical areas of a component are compared with each other in order to identify changes and faults,” explains Dietmar Vogel. “Depending on the load, shifts in local image patterns are discernible.

A tiny crack can thus be identified although it cannot be recognized with certainty even in a microscopic image.” One special variant of the system is the fibDAC technique (FIB stands for Focus Ion Beam). This identifies internal stresses in the smallest dimensions, which offers interesting potential for microchip manufacture because internal stresses and their control play an important role in the development of new computer generations. Bernd Michel, Dietmar Vogel and Jürgen Keller designed the system and took it from the initial idea through to the marketable measurement technique.

They have been awarded the Joseph-von-Fraunhofer Prize in recognition of their achievement. The international response is proof enough of the widespread demand for such a testing method. Companies such as Infineon, BMW and Ford, as well as Bosch, TEMIC and Motorola, have already conducted material tests on a micro- and nanoscale or are planning to do so.

Source: Fraunhofer-Gesellschaft

Explore further: From nanocrystals to earthquakes, solid materials share similar failure characteristics

Related Stories

Seven case studies in carbon and climate

November 13, 2015

Every part of the mosaic of Earth's surface—ocean and land, Arctic and tropics, forest and grassland—absorbs and releases carbon in a different way. Wild-card events such as massive wildfires and drought complicate the ...

To eliminate lead from large-sized engines

October 22, 2015

With the aim of more efficient and less polluting industry, the Basque R&D centre IK4-TEKNIKER is participating in a European project focusing on the development of a new range of lead-free bearings for large-sized, high-performance ...

How can engineers make steel that doesn't baulk at hydrogen?

November 12, 2015

For over 100 years engineers have known that hydrogen can cause metals to become incredibly brittle, but they've been able to do little to protect against it. Now, Oxford University researchers are working on a large collaborative ...

New washer can accurately measure a bolt's clamping force

November 11, 2015

A piezoelectric load-sensing washer being developed by a professor and a recent graduate at The University of Alabama in Huntsville (UAH) provides a more accurate way to measure the clamping force exerted by the bolt it is ...

Study predicts bedrock weathering based on topography

October 29, 2015

Just below Earth's surface, beneath the roots and soil, is a hard, dense layer of bedrock that is the foundation for all life on land. Cracks and fissures within bedrock provide pathways for air and water, which chemically ...

Recommended for you

Amazon deforestation leaps 16 percent in 2015

November 28, 2015

Illegal logging and clearing of Brazil's Amazon rainforest increased 16 percent in the last year, the government said, in a setback to the aim of stopping destruction of the world's greatest forest by 2030.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.