Molecules that suck

Nov 21, 2005

The interaction between the tip of a scanning tunnelling microscope (STM) and atoms or molecules bound to a surface can be used to construct impressive nanostructures, such as the 'quantum corral'.

As reported in the December issue of Nature Materials (DOI: 10.1038/nmat1529), researchers combine STM manipulation techniques with the ability of a molecule to assemble nanostructures by sucking up and depositing atoms where needed.

The invention of the STM in the early 1980s was the catalyst of the nanoscale technological revolution, not only for imaging but also for interacting with matter at the atomic scale. Since then, progress in manipulation techniques has shown that the interaction of molecules with the surface of a metal can induce surface reconstruction. Francesca Moresco and colleagues now go a step further by moving and organizing metal atoms on a substrate with the help of a well-designed six-leg organic molecule.

The copper atoms trapped under the organic molecule can be further rearranged by bringing the whole system and its copper load to a specific position on the surface where the metal atoms can subsequently be released.

The authors believe that this versatile assembling approach should facilitate the interconnection of molecular devices to well-defined atomic-scale metallic electrodes on insulating surfaces, where STM has so far proved unsuccessful.

Source: Nature

Explore further: A better way to build DNA scaffolds

Related Stories

Better measurements of single molecule circuits

Feb 18, 2015

It's nearly 50 years since Gordon Moore predicted that the density of transistors on an integrated circuit would double every two years. "Moore's Law" has turned out to be a self-fulfilling prophecy that ...

Recommended for you

A better way to build DNA scaffolds

9 hours ago

Imagine taking strands of DNA - the material in our cells that determines how we look and function - and using it to build tiny structures that can deliver drugs to targets within the body or take electronic ...

Nanotechnology used to make watch case

13 hours ago

It's one thing to take a Swiss watch to Switzerland, quite another to impress the locals. Australian company Bausele recently did just that, thanks to some clever thinking at Flinders University in South ...

Researchers exploring spintronics in graphene

14 hours ago

Electronics is based on the manipulation of electrons and other charge carriers, but in addition to charge, electrons possess a property known as spin. When spin is manipulated with magnetic and electric ...

Two-dimensional material seems to disappear, but doesn't

May 05, 2015

(Phys.org)—When exposed to air, a luminescent 2D material called molybdenum telluride (MoTe2) appears to decompose within a couple days, losing its optical contrast and becoming virtually transparent. But when s ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.