Researchers develop hybrid silicon evanescent laser

November 15, 2005

In what promises to be an important advance, researchers at the University of California, Santa Barbara have developed a novel laser by bonding optical gain layers directly to a silicon laser cavity. This hybrid laser offers an alternative to silicon Raman lasers and is an order of magnitude shorter. The laser is optically pumped, operates in continuous wave mode, and only needs 30 mW of input pump power.

The research was published in Optics Express today.

This evanescent silicon laser demonstration is the first step toward an electrically pumped hybrid silicon laser. Increasingly, the performance of microelectronic systems will depend more on the connections between chips and devices than on the characteristics of the chips and devices themselves. As semiconductor systems get smaller, interconnect capacity and power dissipation will limit their performance. Optical interconnects could alleviate these limitations but the challenge has been to create a semiconductor laser that can be fully integrated with silicon microelectronics.

The laser developed by John Bowers and his students, Alex Fang and Hyundai Park, uses InAlGaAs quantum wells to provide optical amplification. "The ability to combine the best of both worlds (i.e. III-V gain material with silicon photonics) could lead to a new way of enabling highly integrated laser sources with intelligent opto-electronic devices for future optical communications at low cost," said John Bowers, professor of electrical and computer engineering at UCSB .

Source: UCSB

Explore further: Seeing quantum motion

Related Stories

Seeing quantum motion

August 28, 2015

Consider the pendulum of a grandfather clock. If you forget to wind it, you will eventually find the pendulum at rest, unmoving. However, this simple observation is only valid at the level of classical physics—the laws ...

Microresonators could bring optical sensors, communications

August 12, 2015

Researchers have solved a key obstacle in creating the underlying technology for miniature optical sensors to detect chemicals and biological compounds, high-precision spectroscopy, ultra-stable microwave sources, and optical ...

Lasers tailor graphene for new electronics technology

August 6, 2015

Carbon nanomaterials display extraordinary physical properties, outstanding among any other substance available, and graphene has grown as the most promising material for brand-new electronic circuitry, sensors and optical ...

Recommended for you

How to curb emissions? Put a price on carbon

September 3, 2015

Literally putting a price on carbon pollution and other greenhouse gasses is the best approach for nurturing the rapid growth of renewable energy and reducing emissions.

Which insects are the best pollinators?

September 3, 2015

Bees top the charts for pollination success according to one of the first studies of insect functionality within pollination networks, published today by researchers at the University of Bristol and the University of St Andrews.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.