Einstein's relativity theory proven with the 'lead' of a pencil

November 9, 2005
Pencil and Graphite

Scientists at The University of Manchester have discovered a new way to test Einstein's theory of relativity using the 'lead' of a pencil.

Until now it was only possible to test the theory by building expensive machinery or by studying stars in distant galaxies, but a team of British, Russian and Dutch scientists has now proven it can be done in the lab using an ultra-thin material called Graphene.

The group, led by Professor Andre Geim of the School of Physics and Astronomy, discovered the one atom thick material last year. Graphene is created by extracting one atom thick slivers of graphite via a process similar to that of tracing with a pencil.

Professor Geim, said: "To understand implications of the relativity theory, researchers often have to go considerable lengths, but our work shows that it is possible to set up direct experiments to test relativistic ideas. In theory, this will speed up possible discoveries and probably save billions of pounds now that tests can be set up using Graphene and relatively inexpensive laboratory equipment."

In a paper published in Nature (November 10, 2005), the team describes how electric charges in Graphene appear to behave like relativistic particles with no mass (zero rest mass). The new particles are called massless Dirac fermions and are described by Einstein's relativity theory (so-called the Dirac equation).

The team also reports several new relativistic effects. They have shown that massless Dirac fermions are pulled by magnetic fields in such a manner that they gain a dynamic (motion) mass described by the famous Einstein's equation E=mc2. This is similar to the case of photons (particles of light) that also have no mass but can still feel the gravitational pull of the Sun due their dynamic mass described by the same equation.

Dr Kostya Novoselov, a key investigator in this research, added: "The integer and fractional quantum Hall effects are two of the most remarkable discoveries of the late 20th century. It is not easy to explain their significance but both discoveries led to Nobel prizes. One can probably appreciate the importance of our present work in terms of fundamental physics, if I mention that one of the phenomena we report is a new, relativistic type of the quantum Hall effect."

Source: University of Manchester

Explore further: Phagraphene, a relative of graphene, discovered

Related Stories

Phagraphene, a relative of graphene, discovered

September 3, 2015

A group of scientists from Russia, the USA and China have predicted the existence of a new two-dimensional carbon material via computer generated simulation, a "patchwork" analogue of graphene called phagraphene. The results ...

New study confirms exotic electric properties of graphene

November 17, 2009

(PhysOrg.com) -- First, it was the soccer-ball-shaped molecules dubbed buckyballs. Then it was the cylindrically shaped nanotubes. Now, the hottest new material in physics and nanotechnology is graphene: a remarkably flat ...

Graphene gives up more of its secrets

July 15, 2011

Graphene, a sheet of carbon only a single atom thick, was an object of theoretical speculation long before it was actually made. Theory predicts extraordinary properties for graphene, but testing the predictions against experimental ...

Graphene applications in mobile communication

March 23, 2015

GSM, UMTS, LTE, WiFi, Bluetooth – to name just a few of the wireless standards that have become a natural part of mobile communication today. For all these wireless standards, signal processing could not be done without ...

Recommended for you

Don't forget plankton in climate change models, says study

November 26, 2015

A new study from the University of Exeter, published in the journal Ecology Letters, found that phytoplankton - microscopic water-borne plants - can rapidly evolve tolerance to elevated water temperatures. Globally, phytoplankton ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.