Einstein's relativity theory proven with the 'lead' of a pencil

November 9, 2005
Pencil and Graphite

Scientists at The University of Manchester have discovered a new way to test Einstein's theory of relativity using the 'lead' of a pencil.

Until now it was only possible to test the theory by building expensive machinery or by studying stars in distant galaxies, but a team of British, Russian and Dutch scientists has now proven it can be done in the lab using an ultra-thin material called Graphene.

The group, led by Professor Andre Geim of the School of Physics and Astronomy, discovered the one atom thick material last year. Graphene is created by extracting one atom thick slivers of graphite via a process similar to that of tracing with a pencil.

Professor Geim, said: "To understand implications of the relativity theory, researchers often have to go considerable lengths, but our work shows that it is possible to set up direct experiments to test relativistic ideas. In theory, this will speed up possible discoveries and probably save billions of pounds now that tests can be set up using Graphene and relatively inexpensive laboratory equipment."

In a paper published in Nature (November 10, 2005), the team describes how electric charges in Graphene appear to behave like relativistic particles with no mass (zero rest mass). The new particles are called massless Dirac fermions and are described by Einstein's relativity theory (so-called the Dirac equation).

The team also reports several new relativistic effects. They have shown that massless Dirac fermions are pulled by magnetic fields in such a manner that they gain a dynamic (motion) mass described by the famous Einstein's equation E=mc2. This is similar to the case of photons (particles of light) that also have no mass but can still feel the gravitational pull of the Sun due their dynamic mass described by the same equation.

Dr Kostya Novoselov, a key investigator in this research, added: "The integer and fractional quantum Hall effects are two of the most remarkable discoveries of the late 20th century. It is not easy to explain their significance but both discoveries led to Nobel prizes. One can probably appreciate the importance of our present work in terms of fundamental physics, if I mention that one of the phenomena we report is a new, relativistic type of the quantum Hall effect."

Source: University of Manchester

Explore further: Graphene applications in mobile communication

Related Stories

Graphene applications in mobile communication

March 23, 2015

GSM, UMTS, LTE, WiFi, Bluetooth – to name just a few of the wireless standards that have become a natural part of mobile communication today. For all these wireless standards, signal processing could not be done without ...

New species of electrons can lead to better computing

September 11, 2014

Electrons that break the rules and move perpendicular to the applied electric field could be the key to delivering next generation, low-energy computers, a collaboration of scientists from the University of Manchester and ...

Evidence confirms combustion theory

July 1, 2014

(Phys.org) —Researchers at the Department of Energy's Lawrence Berkeley National Lab (Berkeley Lab) and the University of Hawaii have uncovered the first step in the process that transforms gas-phase molecules into solid ...

Scientists use DNA to assemble a transistor from graphene

September 6, 2013

(Phys.org) —Graphene is a sheet of carbon atoms arrayed in a honeycomb pattern, just a single atom thick. It could be a better semiconductor than silicon – if we could fashion it into ribbons 20 to 50 atoms wide. Could ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

At Saturn, one of these rings is not like the others

September 2, 2015

When the sun set on Saturn's rings in August 2009, scientists on NASA's Cassini mission were watching closely. It was the equinox—one of two times in the Saturnian year when the sun illuminates the planet's enormous ring ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.