In Depth: Tide out on Titan? A soft solid surface for Huygens

November 30, 2005
Huygens descent and landing overview. Credits: ESA/C.Carreau

The Surface Science Package (SSP) revealed that Huygens could have hit and cracked an ice ‘pebble’ on landing, and then it slumped into a sandy surface possibly dampened by liquid methane. Had the tide on Titan just gone out?

Image: Huygens descent and landing overview. Credits: ESA/C.Carreau

The SSP comprised nine independent sensors, chosen to cover the wide range of properties that be encountered, from liquids or very soft material to solid, hard ice. Some were designed primarily for landing on a solid surface and others for a liquid landing, with eight also operating during the descent.

Extreme and unexpected motion of Huygens at high altitudes was recorded by the SSP’s two-axis tilt sensor tilt sensor, suggesting strong turbulence whose meteorological origin remains unknown.

Penetrometry and accelerometry measurements on impact revealed that the surface was neither hard (like solid ice) nor very compressible (like a blanket of fluffy aerosol). Huygens landed on a relatively soft surface resembling wet clay, lightly packed snow and either wet or dry sand.

The probe had penetrated about 10 cm into surface, and settling gradually by a few millimetres after landing and tilting by a fraction of a degree. An initial high penetration force is best explained by the probe striking one of the many pebbles seen in the DISR images after landing.

Acoustic sounding with SSP over the last 90 m above the surface revealed a relatively smooth, but not completely flat, surface surrounding the landing site. The probe’s vertical velocity just before landing was determined with high precision as 4.6 m/s and the touchdown location had an undulating topography of around 1 metre over an area of 1000 sq. metres.

Those sensors intended to measure liquid properties (refractometer, permittivity and density sensors) would have performed correctly had the probe landed in liquid. The results from these sensors are still being analysed for indications of trace liquids, since the Huygens GCMS detected evaporating methane after touchdown.

Together with optical, radar and infrared spectrometer images from Cassini and images from the DISR instrument on Huygens, these results indicate a variety of possible processes modifying Titan’s surface.

Fluvial and marine processes appear most prominent at the Huygens landing site, although aeolian (wind-borne) activity cannot be ruled out. The SSP and HASI impact data are consistent with two plausible interpretations for the soft material: solid, granular material having a very small or zero cohesion, or a surface containing liquid.

In the latter case, the surface might be analogous to a wet sand or a textured tar/wet clay. The ‘sand’ could be made of ice grains from impact or fluvial erosion, wetted by liquid methane. Alternatively it might be a collection of photochemical products and fine-grained ice, making a somewhat sticky ‘tar’.

The uncertainties reflect the exotic nature of the materials comprising the solid surface and possible liquids in this extremely cold (–180 °C) environment.

Source: ESA

Explore further: Land Ho! Huygens Plunged to Titan Surface 5 Years Ago

Related Stories

Land Ho! Huygens Plunged to Titan Surface 5 Years Ago

January 14, 2010

(PhysOrg.com) -- The Huygens probe parachuted down to the surface of Saturn's haze-shrouded moon Titan exactly five years ago on Jan. 14, 2005, providing data that scientists on NASA's Cassini mission to Saturn are still ...

Image: Dark pools on Titan

January 11, 2016

This radar image from the Cassini orbiter shows a thin strip of surface on Saturn's moon Titan. The yellow-hued terrain appears to be peppered with blue-tinted lakes and seas. However, these would not be much fun to splash ...

Huygens lands with a splat

January 18, 2005

Although Huygens landed on Titan's surface on 14 January, activity at ESA's European Space Operations Centre in Darmstadt, Germany, continues at a furious pace. Scientists are still working to refine the exact location of ...

Bouncing on Titan: How Huygens landed

October 11, 2012

(Phys.org)—ESA's Huygens probe bounced, slid and wobbled its way to rest in the 10 seconds after touching down on Saturn's moon, Titan, in January 2005, a new analysis reveals. The findings provide novel insight into the ...

Recommended for you

Swiss firm acquires Mars One private project

December 2, 2016

A British-Dutch project aiming to send an unmanned mission to Mars by 2018 announced Friday that the shareholders of a Swiss financial services company have agreed a takeover bid.

Bethlehem star may not be a star after all

December 2, 2016

It is the nature of astronomers and astrophysicists to look up at the stars with wonder, searching for answers to the still-unsolved mysteries of the universe. The Star of Bethlehem, and its origin, has been one of those ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.