How-to book published on laser beam-shaping applications

Oct 27, 2005
How-to book published on laser beam-shaping applications

Following up on their well-received first book, Laser Beam Shaping: Theory and Techniques, Sandia National Laboratories researchers Fred Dickey and Scott Holswade have edited (with David Shealy of the University of Alabama at Birmingham) a compact new volume, Laser Beam Shaping Applications.

The attractively packaged, 357-page volume offers readers the thoughts of 19 prominent practitioners who share their in-depth knowledge of how to shape laser beams to optimize their utility and improve their future development.

Contributors hail from sites as diverse as Moscow, Pretoria, Rochester, and Albuquerque.

In nine illustrated chapters, the authors — leaders in their respective specialties — discuss how to improve illuminators for microlithography, array-type laser printing systems, and excimer laser image systems, as well as optical data storage, isotope separation, shaping via flexible mirrors, and spectral control of spatially dispersive lasers. There is also a review of the modern field of beam-shaping.

The final chapter contains a history of beam shaping that began thousands of years ago with Assyrians in northern Iraq who had developed “a small oval, polished rock crystal in the shape of a plano-convex lens about one-quarter inch thick.” The chapter also discusses the contributions of Archimedes, who is said to have arranged parabolic mirrors that would quickly sink wooden ships by burning holes in them.

Extensive references offer opportunities for more in-depth study. The book, published by the Taylor & Francis Group, is 102nd in its optical science and engineering titles.

Recognizing the remarkable lack of acknowledgments to engineers in the modern world (despite the fact that their achievements are everywhere), the authors dedicate their second volume “to the many unrecognized researchers who developed key methods and applications of beam shaping. They innovated quietly to maintain legitimate corporate advantage, so their names are largely unknown.”

Soure: Sandia National Laboratories

Explore further: A 'movie' of ultrafast rotating molecules at a hundred billion per second

Related Stories

Improved sensors help navigate gravity waves

Jun 26, 2015

Efforts to detect gravitational waves—which were first predicted by Albert Einstein nearly 100 years ago—are advancing with international researchers including UWA researchers boosting the sensitivity ...

Using lasers to see the shape of molecules

Jun 24, 2015

A scientist in a crisp, white lab coat and protective eye goggles sits behind a safety shield, controller in hand. In front of him is a powerful titanium-sapphire laser, aimed at a crystal lens. His thumb gently squeezes ...

Could we one day control the path of lightning?

Jun 19, 2015

Lightning dart across the sky in a flash. And even though we can use lightning rods to increase the probability of it striking at a specific location, its exact path remains unpredictable. At a smaller scale, ...

X-ray imaging reveals secrets in battery materials

Jun 18, 2015

In a new study, researchers explain why one particular cathode material works well at high voltages, while most other cathodes do not. The insights, published in the 19 June issue of the journal Science, could ...

A laser beam's path through NASA's ICESat-2

Jun 17, 2015

Before beaming 300 miles to Earth's surface, bouncing off the ground and travelling another 300 miles back into space, the laser photons on NASA's Ice, Cloud and Land Elevation Satellite-2 first have to complete ...

Recommended for you

To conduct, or to insulate? That is the question

Jul 02, 2015

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

Soundproofing with quantum physics

Jul 02, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.