How Hot Tuna (and Some Sharks) Stay Warm

October 28, 2005
How Hot Tuna (and Some Sharks) Stay Warm

Scientists now have direct evidence that the north Pacific salmon shark maintains its red muscle (RM) at 68-86 degrees Fahrenheit, much warmer than the 47 F water in which it lives. The elevated muscle temperature presumably helps the salmon shark survive the cold waters of the north Pacific and take advantage of the abundant food supply there. The heat also appears to factor into the fish's impressive swimming ability.

Image: Lamnid sharks maintain an elevated temperature in the red muscle concentrated in their mid-region near the backbone. This specialized anatomy allows the predators to swim fast and continuously, which in turn, allows heat to be retained in the core of the fish leading to local warm-bloodedness. In most other fish, the red muscle is located close to the skin, yielding a fully cold-blooded body and only short bursts of rapid, powerful swimming. Credit: Zina Deretsky, National Science Foundation

During what some would say was a better-than-average day at work, Robert Shadwick of the Scripps Institution of Oceanography and his colleagues went salmon shark fishing in the Gulf of Alaska. After catching specimens over 7-feet long and weighing more than 300 pounds, the researchers measured temperatures throughout the sharks' bodies and tested the mechanical power of RM samples.

Their results, published in the Oct. 27 issue of the journal Nature, showed that at 50 F, RM produced only 25-50 percent of the power it produced at 79 F. The researchers concluded that RM temperatures below 68 F could permanently impair muscle function.

National Science Foundation (NSF) program manager, Ione Hunt von Herbing said, "Knowing specific details about the anatomy and physiology of salmon sharks provides key insight into their ability to produce such power and speed during swimming. The knowledge could translate into better designs for underwater vehicles."

The study was funded by NSF's integrative organismal biology program.

Salmon sharks are lamnids, a group of sharks that also includes the mako and great white. Numerous studies have shown that lamnid sharks and tunas share many anatomical and physiological specializations that endow them with their impressive swimming power and speed. In contrast to other fish where the RM is near the skin, the RM of these sharks and tunas is near the backbone. Even though the ancestors of bony tuna and cartilaginous sharks diverged more than 400 million years ago, selection pressure for high-performance swimming in each group seems to have occurred independently about 50 million years ago.

Throughout its life, a salmon shark never stops swimming because it will sink. The body heat generated from continuous swimming elevates the RM temperature, which in turn, warms the surrounding white muscle and allows the shark to survive the frigid waters of the north Pacific. If a shark stops swimming, it could die from cold exposure.

Source: NSF

Explore further: Researchers discover deep sea sharks are buoyant

Related Stories

Researchers discover deep sea sharks are buoyant

June 19, 2015

In a study published recently, scientists from the University of Hawai'i - Mānoa (UHM) and University of Tokyo revealed that two species of deep-sea sharks, six-gill and prickly sharks, are positively buoyant - they have ...

New research reveals first warm-blooded fish

May 14, 2015

New research by NOAA Fisheries has revealed the opah, or moonfish, as the first fully warm-blooded fish that circulates heated blood throughout its body much like mammals and birds, giving it a competitive advantage in the ...

Remoras don't suck

February 12, 2015

How does the hitchhiking, flat-headed remora fish attach to surfaces so securely yet release so easily? Suction was thought to be the easy answer, but Brooke Flammang, a biologist at the New Jersey Institute of Technology ...

Recommended for you

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

'Expansion entropy': A new litmus test for chaos?

July 28, 2015

Can the flap of a butterfly's wings in Brazil set off a tornado in Texas? This intriguing hypothetical scenario, commonly called "the butterfly effect," has come to embody the popular conception of a chaotic system, in which ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.