Guarding giants with tiny protectors

October 23, 2005

How do you build an infrared (IR) camera that is small enough to fit on a mini-unmanned aerial vehicle (UAV) without cryogenic cooling? Call in the nanobots.

Researchers working with the Office of Naval Research (ONR) have developed a way to build extremely small sensors using nanorobot fabrication. This new process, created by Harold Szu and James Buss of ONR and implemented by Xi Ning of Michigan State University, allows a human operator using a powerful microscope and hand-held controller to manipulate nano-sized contact points remotely--like using extremely small hands--to construct the pixel elements that will form the heart of the sensor. Each pixel will be composed of carbon nanotubes, which have nanoscale diameters and submicron lengths. Because of the one-dimensional nature of carbon nanotubes, they have significantly lower thermal noise than traditional semi-conductors. A full-sized camera incorporating this technology would be inexpensive and lightweight--about one tenth the cost, weight, and size of a conventional digital camera.

The reason for making such a small sensor has to do with the largest of things--protecting multibillion-dollar aircraft carriers and their thousands of Sailors. Today, missiles have gotten smaller, stealthier, and more difficult to detect than ever--and you don't need to have the budget of a superpower (or even be a power at all) to buy or manufacture them. To improve the ability of carrier strike groups to detect these missiles over the horizon, the U.S. Navy is searching for ways to augment its surveillance capabilities with a covert team of mini-UAVs equipped with passive sensors that can cruise near the ocean surface at slow speeds for many hours.

One of the salient features distinguishing a missile plume from flare camouflage is the unique characteristics of a plume's IR signature, especially in the mid-IR spectrum. The signal-to-noise ratio of a conventional IR detector array operating in the ocean environment, however, demands the use of cumbersome liquid nitrogen cryogenic cooling for all current mid-IR spectrum cameras. Unfortunately, a mini-UAV's payload limitation does not allow such a bulky technology on board--but a small UAV is possible with the advent of nano-based sensors.

The proposed IR camera is being considered for other applications as well, including the field of breast cancer detection. "This new technology will revolutionize how sensors, cameras, and countless other medical devices will be made by a nanorobot, which can respond to public demands of non-contact examinations for early cancer screening at every household," said Father Giofranco Basti of the Pontifical Lateran University at the Vatican City, Rome, Italy. Next spring, the university will conduct a screening test bed of early breast tumor treatment using this new technology in collaboration with ONR.

Source: Office of Naval Research

Explore further: NASA Goddard technology helps fight forest pests

Related Stories

NASA Goddard technology helps fight forest pests

July 31, 2015

Northeastern forests in the United States cover more than 165 million acres, an area almost as big as Texas. Soon, millions of pine and ash trees in those forests could be wiped out, thanks in part to two types of voracious ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.