Dark spins light up

October 25, 2005

Want to see a diamond? Forget the jewellery store - try a physics laboratory. In the November issue of Nature Physics, Ryan Epstein and colleagues demonstrate the power of their microscope for imaging individual nitrogen atoms that sit at vacant sites in the diamond structure.

Such ‘vacancy’ centres have a long lifetime within the diamond host and could be used as the basis for a room-temperature quantum computer.

Because of the potential application as a bit of quantum information, the single magnetic spin (pointing up or down) associated with the extra electron of a nitrogen atom has featured in many different experiments.

The latest involves a room-temperature microscope that detects light emitted by a nitrogen vacancy centre. Through their precise control of the alignment of the magnetic field, the researchers can also detect local non-luminescing impurities that couple to the nitrogen vacancy centres.

The vacancy centres light the way to neighbouring 'dark' spins that normally would not be detected. These dark spins have a longer life-time than that of the vacancy atoms, and could be potentially more useful for applications involving quantum information processing.

Publication:
Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

R. J. Epstein, F. M. Mendoza, Y. K. Kato, D. D. Awschalom

Nature Physics (16 Oct 2005) Letters
DOI: 10.1038/nphys141

Source: Nature

Explore further: Luminescent signals from green glowing diamond defects could monitor temperature with unprecedented versatility

Related Stories

Electron spins controlled using sound waves

March 9, 2015

The ability to control the intrinsic angular momentum of individual electrons – their "spins" – could lead to a world of new technologies that involve storing and processing information.

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.