Spitzer and Deep Impact Build Recipe for Comet Soup

September 7, 2005
Spitzer and Deep Impact Build Recipe for Comet Soup

When Deep Impact smashed into comet Tempel 1 on July 4, 2005, it released the ingredients of our solar system's primordial "soup." Now, astronomers using data from NASA's Spitzer Space Telescope and Deep Impact have analyzed that soup and begun to come up with a recipe for what makes planets, comets and other bodies in our solar system.

Image: Hungry for a comet? Perhaps not, but astronomers using data from NASA's Spitzer Space Telescope and the Deep Impact mission are putting together a recipe for comet "soup" - the primordial stuff of planets, comets and other bodies in our solar system.

"The Deep Impact experiment worked," said Dr. Carey Lisse of Johns Hopkins University's Applied Physics Laboratory, Laurel, Md. "We are assembling a list of comet ingredients that will be used by other scientists for years to come." Lisse is the team leader for Spitzer's observations of Tempel 1. He presented his findings this week at the 37th annual meeting of the Division of Planetary Sciences in Cambridge, England.

Spitzer watched the Deep Impact encounter from its lofty perch in space. It trained its infrared spectrograph on comet Tempel 1, observing closely the cloud of material that was ejected when Deep Impact's probe plunged below the comet’s surface. Astronomers are still studying the Spitzer data, but so far they have spotted the signatures of a handful of ingredients, essentially the meat of comet soup.

These solid ingredients include many standard comet components, such as silicates, or sand. And like any good recipe, there are also surprise ingredients, such as clay and chemicals in seashells called carbonates. These compounds were unexpected because they are thought to require liquid water to form.

"How did clay and carbonates form in frozen comets?" asked Lisse. "We don't know, but their presence may imply that the primordial solar system was thoroughly mixed together, allowing material formed near the Sun where water is liquid, and frozen material from out by Uranus and Neptune, to be included in the same body."

Also found were chemicals never seen before in comets, such as iron-bearing compounds and aromatic hydrocarbons, found in barbecue pits and automobile exhaust on Earth.

The silicates spotted by Spitzer are crystallized grains even smaller than sand, like crushed gems. One of these silicates is a mineral called olivine, found on the glimmering shores of Hawaii's Green Sands Beach.

Planets, comets and asteroids were all born out of a thick soup of chemicals that surrounded our young Sun about 4.5 billion years ago. Because comets formed in the outer, chilly regions of our solar system, some of this early planetary material is still frozen inside them.

Having this new grocery list of comet ingredients means theoreticians can begin testing their models of planet formation. By plugging the chemicals into their formulas, they can assess what kinds of planets come out the other end.

"Now, we can stop guessing at what's inside comets," said Dr. Mike A'Hearn, principal investigator for the Deep Impact mission, University of Maryland, College Park. "This information is invaluable for piecing together how our own planets as well as other distant worlds may have formed."

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech. The University of Maryland, College Park, conducted the overall mission management for Deep Impact, and JPL handled project management for the mission for NASA's Science Mission Directorate.

Source: NASA

Explore further: The gas giant Jupiter

Related Stories

The gas giant Jupiter

August 26, 2015

Ever since the invention of the telescope four hundred years ago, astronomers have been fascinated by the gas giant known as Jupiter. Between it's constant, swirling clouds, its many, many moons, and its red spot, there are ...

One decade after launch, Mars Orbiter still going strong

August 10, 2015

Ten years after launch, NASA's Mars Reconnaissance Orbiter (MRO) has revealed the Red Planet's diversity and activity, returning more data about Mars every week than all six other missions currently active there. And its ...

The planet Mercury

August 6, 2015

Mercury is the closest planet to our sun, the smallest of the eight planets, and one of the most extreme worlds in our solar systems. Named after the Roman messenger of the gods, the planet is one of a handful that can be ...

The Planet Saturn

August 3, 2015

The farthest planet from the Sun that be observed with the naked eye, the existence of Saturn has been known for thousands of years. And much like all celestial bodies that can be observed with the aid of instruments – ...

Rosetta spacecraft sees sinkholes on comet

July 1, 2015

The European Space Agency's Rosetta spacecraft first began orbiting comet 67P/Churyumov-Gerasimenko in August 2014. Almost immediately, scientists began to wonder about several surprisingly deep, almost perfectly circular ...

Recommended for you

New nanomaterial maintains conductivity in 3-D

September 4, 2015

An international team of scientists has developed what may be the first one-step process for making seamless carbon-based nanomaterials that possess superior thermal, electrical and mechanical properties in three dimensions.

Astronomers detect the farthest galaxy yet with Keck telescope

September 4, 2015

A team of Caltech researchers that has spent years searching for the earliest objects in the universe now reports the detection of what may be the most distant galaxy ever found. In an article published August 28, 2015 in Astrophysical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.