Sailing the planets: Exploring Mars with guided balloons

September 27, 2005
Sailing the planets

Mars rovers, Spirit and Opportunity, have, by now, spent almost two years on the surface of Mars. They traveled several miles each, frequently stopping and analyzing scientific targets with their cameras, spectrometers and other instruments to uncover evidence of liquid water on Mars in the past. Their mission is a smashing success for NASA.

But what if NASA had a platform on Mars that was able to cover these distances in a matter of hours instead and study the rocks on the surface in the same detail as rovers do? Scientific return from such a vehicle would be immense – scientists would be able to study the whole planet in greater detail in a time span of a single year.

While orbiters can look at virtually any point on the surface of a planet, they lack the resolution provided by instruments on rovers or landers. Rovers, on the other hand, have limited mobility and cannot travel very far from their landing site. As the atmosphere of Mars is very thin, an airplane at Mars would last for just an hour until it runs out of fuel.

Global Aerospace Corporation of Altadena, CA proposes that the Mars exploration vehicle combining the global reach similar to that of orbiters and high resolution observations enabled by rovers could be a balloon that can be steered in the right direction and that would drop small science packages over the target sites. The concept being developed by the Global Aerospace Corporation is funded by the NASA Institute for Advanced Concepts (NIAC).

Balloons have been long recognized as unique, scientific platforms due to their relatively low cost and low power consumption. Two balloons flew in the atmosphere of Venus in 1984. In the past the inability to control the path of Mars balloons has limited their usefulness, and therefore scientific interest in their use.

Global Aerospace Corporation has designed an innovative device, called Balloon Guidance System (BGS) that enables steering a balloon through the atmosphere. The BGS is an aerodynamic surface – a wing – that hangs on a several kilometer-long tether below the balloon. The difference in winds at different altitudes create a relative wind at the latitude of the BGS wing, which in turn creates a lifting force. This lifting force is directed sideways and can be used to pull the balloon left or right relative to the prevailing winds.

Floating just several kilometers above the surface of Mars, the guided Mars balloons can observe rock formations, layerings in canyon walls and polar caps, and other features – at very high resolution using relatively small cameras. They can be directed to fly over specific targets identified from orbital images and to deliver small surface laboratories, that will analyze the site at the level of detail rovers would do. Instruments at the balloon's gondola can also measure traces of methane in the atmospheric and follow its increasing concentrations to the source on the ground. This way the search for existing or extinct life on Mars can be accelerated.

Explore further: Can you grow potatoes on Mars?

Related Stories

Can you grow potatoes on Mars?

September 23, 2015

This is not as odd a question as it sounds, and by next week I reckon a good lot of you will be pondering it. Why? Well the 30th September sees the opening of The Martian in Australia, director Ridley Scott's latest offering. ...

Slam dunk for Andreas in space controlling rover on ground

September 9, 2015

Putting a round peg in a round hole is not hard for someone standing next to it. But yesterday ESA astronaut Andreas Mogensen did this while orbiting 400 km up aboard the International Space Station, remotely operating a ...

Canada dominates European Rover Challenge 2015

September 8, 2015

Canadian teams have dominated the second edition of the biggest European competition for Mars rovers that took place on Sept. 5-6 at the Regional Science-Technology Centre in Podzamcze, Poland. The Space Design Team of the ...

Researcher discusses where to land Mars 2020

September 8, 2015

In August 2015, more than 150 scientists interested in the exploration of Mars attended a conference at a hotel in Arcadia, California, to evaluate 21 potential landing sites for NASA's next Mars rover, a mission called Mars ...

Recommended for you

Professor solves 140-year fluid mechanics enigma

October 7, 2015

A Purdue University researcher has solved a 140-year-old enigma in fluid mechanics: Why does a simple formula describe the seemingly complex physics for the behavior of elliptical particles moving through fluid?


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.