Giving photochemistry a hand

September 3, 2005

Making molecules with the right handedness - either a left- or a right-handed arrangement of atomic groupings - is of critical importance to the pharmaceutical industry, as the two different 'handed' forms (called enantiomers) of some drugs can have very different physiological effects. Controlling this molecular arrangement is challenging and often possible only for very specific types of reaction.

That's why the process devised by Thorsten Bach and colleagues will be welcomed. In a Letter published in this week’s Nature, the team propose a way to control enantiomer selectivity in a reaction induced by light. Such 'photochemical' processes are quite common in synthetic chemistry, as well as being essential to the natural process of photosynthesis. Often they involve moving an electron from one molecule, or part of a molecule, to another, and it is such a photoinduced electron transfer process that Bach and colleagues have now brought under control.

The researchers do this with a catalyst: an organic molecule that guides the reaction along the right path and then moves off to do the same so another molecule. The catalyst in this case is a molecule that sticks to the reactant molecule (which is to be transformed into a product molecule with a particular handedness), absorbs light and then uses the energy to take an electron from the reactant. As a result of this electron transfer, the reactant becomes rearranged into a product molecule with the desired handedness - here, the catalyst acts as a kind of glove that only the correct hand will fit. A News and Views article by Yoshihisa Inoue accompanies this research.

Source: Nature Publishing Group

Explore further: First circularly polarized light detector on a silicon chip

Related Stories

First circularly polarized light detector on a silicon chip

September 22, 2015

Invention of the first integrated circularly polarized light detector on a silicon chip opens the door for development of small, portable sensors that could expand the use of polarized light for drug screening, surveillance, ...

The origins of handedness in life

October 1, 2014

Handedness is a complicated business. To simply say life is left-handed doesn't even begin to capture the blooming hierarchy of binary refinements it continues to evolve. Over the years there have been numerous imaginative ...

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

Mapping the protein universe

October 9, 2015

To understand how life works, figure out the proteins first. DNA is the architect of life, but proteins are the workhorses. After proteins are built using DNA blueprints, they are constantly at work breaking down and building ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.