NSF Centers Will Use Nano-Interface Control and Bioengineering for Materials by Design

Sep 27, 2005

The National Science Foundation (NSF) has established two new Materials Research Science and Engineering Centers (MRSECs) at Yale University and the University of Washington, with a combined NSF investment of up to $14 million over the next six years. The centers will also receive substantial support from the participating academic institutions, state governments and industry.

The Center for Research on Interface Structure and Phenomena will investigate the electronic, magnetic and chemical properties of complex oxide materials and their interfaces, with potential applications to magnetic storage, spintronics, and chemical sensing. The Center is a partnership between Yale University, Brookhaven National Laboratory and Southern Connecticut State University. The Genetically Engineered Materials Science and Engineering Center at the University of Washington will support innovative research and education that integrates modern biology with state-of-the-art chemical synthesis to construct hybrid materials that cannot be achieved through traditional biology or Chemistry.

Each award is initially for six years; renewed NSF support is possible through competitive review in the fifth year of the award.

In addition to the two new centers, another eleven existing MRSECs successfully renewed support in open competition in FY 2005. (A total of 29 Centers are currently supported by the MRSEC program with annual NSF support of $52.5 million.) Each Center has made a substantial commitment to effectively integrate its educational activities with its scientific research program, and to fully develop its human resource potential. The educational outreach activities can range from the elementary school to the postgraduate level. Additionally, the MRSECs constitute a national network of Centers that seeks increased impact on materials science and education beyond what is expected from any one Center.

"Advanced materials are the hidden 'stuff' that enables the modern world to function," said Lance Haworth, Executive Officer for DMR's Division of Materials Research. "Fundamental research on materials is essential to the nation's health, prosperity and welfare. New materials are key to a whole range of rapidly changing technologies such as energy, computers and communications, transportation and increasingly health- and medicine-related technologies as well. These two new awards join a vigorous network of NSF-funded interdisciplinary Centers that are doing exciting work at the frontiers of materials research and preparing the next generation of materials researchers."

Source: NSF

Explore further: A stretchy mesh heater for sore muscles

Related Stories

Aromatic couple makes new chemical bonds

Jun 29, 2015

Esters have been identified to act as a new and clean coupling partner for the carbon-carbon bond forming cross-coupling reaction to make useful compounds for pharmaceuticals, agrochemicals and organic materials.

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

Two-dimensional semiconductor comes clean

Apr 27, 2015

In 2013 James Hone, Wang Fong-Jen Professor of Mechanical Engineering at Columbia Engineering, and colleagues at Columbia demonstrated that they could dramatically improve the performance of graphene—highly ...

Recommended for you

A stretchy mesh heater for sore muscles

21 hours ago

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

Better memory with faster lasers

Jul 02, 2015

DVDs and Blu-ray disks contain so-called phase-change materials that morph from one atomic state to another after being struck with pulses of laser light, with data "recorded" in those two atomic states. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.