Nano radios for microchips

September 15, 2005

Radios the size of bacteria employing nano-magnets could help microchips wirelessly communicate with one another, experts told UPI's Nano World.

"Wireless connections between microchips could offer possible benefits in terms of reduced system complexity and easier and less costly manufacturing requirements," said researcher Fred Mancoff, a magnetoelectronics-device scientist at chipmaker Freescale Semiconductor in Chandler, Ariz.

"One known problem that is out there is the speed bottleneck due to wired interconnects in semiconductor electronics. These devices that we are studying could be a valid solution for nano-sized transmitters and receivers for wireless communication between chips in a computer or even within a chip itself," said researcher Shehzu Kaka, a physicist formerly at the National Institute of Standards and Technology in Boulder, Colo., and now at Seagate Technology in Scotts Valley, Calif. "Chipmakers like Intel are pursuing wireless optical communications between chips, and our technology could be an inexpensive and perhaps more effective alternative."

Two research teams, one led by NIST, the other at Freescale, experimented with magnets each 50 to 80 nanometers wide. Applying electrical current to such magnets causes their poles to rotate. These oscillations then can be employed for radio signals.

The scientists wanted to synchronize the nano-magnet oscillations, making sure they all swung together in step. When the oscillations are synchronized, their combined output can be much greater than the sum of their parts.

Both research teams independently found when the magnets sit about 200 nanometers to 500 nanometers apart, they synchronize naturally, much as two pendulums will come into synchrony if they both are attached to the same support.

The result: The synchronized magnets generate a single signal with twice the intensity of an unsynchronized pair of magnets. The scientists report their findings in the Sept. 15 issue of the journal Nature.

"These devices are fully compatible with standard semiconductor manufacturing technology," Mancoff said.

In principle, this synchronization and the resulting amplification in output power should work not just with two nano-magnets, but also with series of them. Arrays of 10 nano-magnets could produce and receive microwatt signals, enough to serve in transmitters and receivers in cell phones, radar and microchips.

"Larger arrays, and higher powers are the clear next step for applications," said researcher Matthew Pufall, a NIST physicist. However, "from a basic research point of view, we need to understand the nature of the interaction between oscillators."

"A more practical issue involves the engineering of such a device into a working chip, which will be anything but trivial. But then, the researchers are from Freescale and NIST. They definitely have the resources and the know-how," said physicist Raj Mohanty of Boston University.

Copyright 2005 by United Press International

Explore further: A necklace of fractional vortices

Related Stories

A necklace of fractional vortices

October 2, 2015

Researchers at Chalmers University of Technology have arrived at how what is known as time-reversal symmetry can break in one class of superconducting material. The results have been published in the highly ranked Nature ...

One step closer to a new kind of computer

September 16, 2015

An international group of physicists, including Aleksandr Golubov, head of the MIPT Laboratory of Topological Quantum Phenomena in Superconductor Systems, recently presented results of experiments testing a new phenomenon ...

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Recommended for you

NASA measuring the pulsating aurora

October 7, 2015

Thanks to a lucky conjunction of two satellites, a ground-based array of all-sky cameras, and some spectacular aurora borealis, researchers have uncovered evidence for an unexpected role that electrons have in creating the ...

The topolariton, a new half-matter, half-light particle

October 7, 2015

A new type of "quasiparticle" theorized by Caltech's Gil Refael, a professor of theoretical physics and condensed matter theory, could help improve the efficiency of a wide range of photonic devices—technologies, such as ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.