Mechanism regulating tooth shape formulation found

September 23, 2005

One of the remaining challenges for evolutionary developmental studies of mammals, whose evolution is best known from their teeth, is how their tooth shape is altered during development.

Researchers of the University of Helsinki together with their Japanese colleagues from the University of Kioto now propose a 'balance of induction' mechanism directing the placement of tooth shape features called cusps. Position and shape of cusps determine whether a tooth shape belongs to human or mouse, for example. Whereas developmental initiation of cusp formation is known to involve several developmental genes at the places of future cusps, it has remained unknown how cusps form at the right places.

Computer simulations on tooth development have suggested that there should be a gene inhibiting induction of cusps. The research team has now identified this inhibitor to be a recently identified gene called ectodin. It turned out that ectodin is the first gene that is expressed as a mirror image of the future cusps.

The team generated a mouse that has no functional ectodin. Whereas the mice appear fairly normal, the areas forming cusps were much broader resulting in cheek teeth whose shape resembles more rhinoceros teeth than mouse teeth. Furthermore, these mice have extra teeth and sometimes adjacent teeth are fused. These results indicate that there is a delicate balance of induction and inhibition in determining tooth cusps and that ectodin is a key gene in this developmental control.

The team confirmed the importasnce of ectodin to development of teeth by culturing teeth that produce ectodin and teeth that lack ectodin with excess amounts of cusp inducing protein (bone morphogenetic protein or BMP). Whereas teeth producing ectodin develop quite normally with excess BMP, teeth without ectodin had a markedly accelerated induction of cusps. Indeed the researchers were able to induce cusps and mineralization of teeth much faster than happens in normal mouse teeth, suggesting that tinkering with the balance of cusp induction may hold potential for future tissue engineering of hard tissues.

Source: University of Helsinki

Related Stories

Recommended for you

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.