How two liquids mix at the surface: an atomic view

September 1, 2005
How two liquids mix at the surface: an atomic view

Whenever cream is poured into coffee, these two liquids form a homogeneous mixture, which is difficult to separate again. Other liquids, such as water and oil, do not mix, instead forming emulsions, such as salad dressing.

Image: Schematic representation of atomic-scale demixing observed in BiSn liquid alloy.

In results reported in this week's issue of Physical Review Letters [Phys. Rev. Lett. 95, 106103 (2005)], a collaboration lead by physicists from Harvard University have used x-rays to look at how atoms of two elemental liquids - bismuth and tin - mix together. Despite forming a perfectly miscible alloy in the bulk phase, near the surface the two elements separate into alternating atomic layers.

"The surface demixing is somewhat of a paradox since it occurs due to the strongly enhanced attraction between the atoms of the two components, while for partially miscible mixtures the opposite is true: atoms or molecules are more attracted to their own kind" explains Dr. Oleg Shpyrko, the leading author of the study.

"Surface demixing was predicted in 1950 by Defay and Prigogine, but it eluded experimentalists for more than 50 years: liquids only demix within a nanometer-deep surface region, and there are very few techniques that can probe structure of liquid surfaces on such tiny length scales. As we attempt to understand properties of nanoscale materials where most atoms are near the surface, these and other interfacial effects are expected to play a dominant role."

by Oleg Shpyrko, Argonne National Laboratory
Web address: http://liquids.deas.harvard.edu/oleg/
Email: oshpyrko_AT_anl.gov
Tel: 630-252-7540

Explore further: How to look for a few good catalysts

Related Stories

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Short wavelength plasmons observed in nanotubes

July 28, 2015

The term "plasmons" might sound like something from the soon-to-be-released new Star Wars movie, but the effects of plasmons have been known about for centuries. Plasmons are collective oscillations of conduction electrons ...

Initial testing of the Wendelstein 7-X magnetic field

July 17, 2015

Testing of the magnetic field in the Wendelstein 7-X fusion device was completed sooner than planned. The measurements, which were much anticipated at the Max Planck Institute for Plasma Physics in Greifswald, show: The superconducting ...

A most singular nano-imaging technique (Update)

July 16, 2015

Just as proteins are one of the basic building blocks of biology, nanoparticles can serve as the basic building blocks for next generation materials. In keeping with this parallel between biology and nanotechnology, a proven ...

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.