How two liquids mix at the surface: an atomic view

Sep 01, 2005
How two liquids mix at the surface: an atomic view

Whenever cream is poured into coffee, these two liquids form a homogeneous mixture, which is difficult to separate again. Other liquids, such as water and oil, do not mix, instead forming emulsions, such as salad dressing.

Image: Schematic representation of atomic-scale demixing observed in BiSn liquid alloy.

In results reported in this week's issue of Physical Review Letters [Phys. Rev. Lett. 95, 106103 (2005)], a collaboration lead by physicists from Harvard University have used x-rays to look at how atoms of two elemental liquids - bismuth and tin - mix together. Despite forming a perfectly miscible alloy in the bulk phase, near the surface the two elements separate into alternating atomic layers.

"The surface demixing is somewhat of a paradox since it occurs due to the strongly enhanced attraction between the atoms of the two components, while for partially miscible mixtures the opposite is true: atoms or molecules are more attracted to their own kind" explains Dr. Oleg Shpyrko, the leading author of the study.

"Surface demixing was predicted in 1950 by Defay and Prigogine, but it eluded experimentalists for more than 50 years: liquids only demix within a nanometer-deep surface region, and there are very few techniques that can probe structure of liquid surfaces on such tiny length scales. As we attempt to understand properties of nanoscale materials where most atoms are near the surface, these and other interfacial effects are expected to play a dominant role."

by Oleg Shpyrko, Argonne National Laboratory
Web address: http://liquids.deas.harvard.edu/oleg/
Email: oshpyrko_AT_anl.gov
Tel: 630-252-7540

Explore further: New model sheds light on 'flocking' behaviour

Related Stories

Artificial muscles get graphene boost

2 hours ago

Researchers in South Korea have developed an electrode consisting of a single-atom-thick layer of carbon to help make more durable artificial muscles.

How we recreated the early universe in the laboratory

May 12, 2015

One of the all-time great mysteries in physics is why our universe contains more matter than antimatter, which is the equivalent of matter but with the opposite charge. To tackle this question, our international team of researchers have managed to create a plasm ...

Ether compounds could work like DNA on oily worlds

May 12, 2015

In the search for life beyond Earth, scientists have justifiably focused on water because all biology as we know it requires this fluid. A wild card, however, is whether alternative liquids can also suffice ...

Towards the ultimate model of water

May 08, 2015

Researchers from the National Physical Laboratory (NPL), IBM and the University of Edinburgh have developed the first conceptually simple but broadly applicable model for water.

Recommended for you

On-demand X-rays at synchrotron light sources

7 hours ago

Consumers are now in the era of "on-demand" entertainment, in which they have access to the books, music and movies they want thanks to the internet. Likewise, scientists who use synchrotron light sources ...

Squeezed quantum cats

10 hours ago

ETH professor Jonathan Home and his colleagues reach deep into their bag of tricks to create so-called 'squeezed Schrödinger cats.' These quantum systems could be extremely useful for future technologies.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.