Completely Biological, yet Artificial

September 14, 2005

Biomaterials are increasingly in demand, needed as materials for implants and prostheses, as "transporters" for drugs, to carry DNA into cells for gene therapy, as supports for the growth of tissue transplants, or for modern diagnostics. What type of materials should we rely on? Researchers at the University of California at Irvine have now synthesized a new class of biomaterials made of sugar and peptide building blocks.

Synthetic polymers have a number of advantages over their natural counterparts; they are very versatile, and their composition, structure, and properties are easy to control. They can often be tailored for specific individual applications. At the same time, these polymers must be biocompatible, biodegradable, and physiologically tolerable. One way to achieve this is to make the artificial biomaterials from natural building blocks; a well-known example of this is poly(lactic acid). A number of biomaterials produced in this fashion are already used in some clinical applications. Until now, one disadvantage has been the very limited variability of the structural and functional properties of this type of material.

Researchers led by Zhibin Guan are now working with a variety of natural building blocks and synthesized polymers made of natural sugars and peptides. “Sugars and peptides are simple monomers that are commonly found in nature and do not have to be produced by complicated methods,” explains Guan. “What is new about our approach is that we developed an efficient way to link these building blocks in alternating sequence into one chain.” This modular approach brings with it the desired versatility, whereas changing the structure of building blocks and their precise order allows for the precise adjustment of desired properties.

An initial series of biomaterials made of the sugar galactose and short peptides that comprise the amino acid lysine may be able to act as gene transporters because the material “wraps” DNA into little packages that are taken up into cells. The biomaterial has also proven to break down easily under physiological conditions and doesn’t induce any immunological reactions in rats. Whereas well-known gene transporters such as polylysine, made exclusively of lysine building blocks, are often quite poisonous, the new material has minimal cytotoxic effects at high concentrations. Says Guan, “We are now developing a family of sugar–peptide biomaterials and will test them for various biomedical applications such as tissue engineering and drug/gene delivery.”

Author: Zhibin Guan, University of California, Irvine (USA),
Title: Saccharide–Peptide Hybrid Copolymers as Biomaterials
Angewandte Chemie International Edition, doi: 10.1002/anie.200501944

Explore further: Programming tool could help engineers build biologically inspired materials

Related Stories

Making nanowires from protein and DNA

September 3, 2015

The ability to custom design biological materials such as protein and DNA opens up technological possibilities that were unimaginable just a few decades ago. For example, synthetic structures made of DNA could one day be ...

Injectable gel fills wounds and promotes tissue regeneration

June 8, 2015

Researchers from the UCLA Henry Samueli School of Engineering and Applied Science have developed an injectable hydrogel that helps skin wounds heal more quickly. The material creates an instant scaffold that allows new tissue ...

Protein mimic shows promise as tissue engineering glue

March 16, 2015

Researchers have demonstrated the potential of a "synthetic protein mimic" to promote the adhesion of brain cells in a laboratory setting. This feat could help overcome a major challenge in nerve tissue engineering.

Recommended for you

On soft ground? Tread lightly to stay fast

October 8, 2015

These findings, reported today, Friday 9th October, in the journal Bioinspiration & Biomechanics, offer a new insight into how animals respond to different terrain, and how robots can learn from them.

Ancient genome from Africa sequenced for the first time

October 8, 2015

The first ancient human genome from Africa to be sequenced has revealed that a wave of migration back into Africa from Western Eurasia around 3,000 years ago was up to twice as significant as previously thought, and affected ...

Blue skies, frozen water detected on Pluto

October 8, 2015

Pluto has blue skies and patches of frozen water, according to the latest data out Thursday from NASA's unmanned New Horizons probe, which made a historic flyby of the dwarf planet in July.

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.