Voracious black holes hide their appetite in dusty galaxies

August 5, 2005
Voracious black holes hide their appetite in dusty galaxies

A UK-led team of astronomers reports today (August 4th) in Nature that they have tracked down an elusive population of black holes growing rapidly hidden behind clouds of dust. Their results suggest that most black hole growth takes place in dusty galaxies, solving astronomer's headaches, as until now, the cosmic x-ray background suggested the existence of more growing black holes than they could find.

Image of an obscured data from combined data sources. The object has been named AMS08. Credit: NASA/JPL-Caltech/A. Martinez-Sansigre (University of Oxford)/NRAO

Growing black holes, known as quasars, are some of the brightest objects in the Universe and are seen by the light emitted as gas and dust spiral into the black hole. Quasars are situated in the inner-most regions of galaxies and can consume the equivalent mass of between ten and a thousand stars in one year! Astronomers believe that all quasars are surrounded by a dusty ring which hides them from sight on Earth in about half of cases.

However, examining the cosmic x-ray background, which is made up primarily of the emissions from quasars, astronomers realised that there should be many more obscured quasars than currently known. Objects surrounded by dust are hard to see with visible light, so the astronomers looked at infrared wavelengths, which are less likely to be reflected away. Using NASA's Spitzer Space Telescope's First Look Data, they were able to find a new population of obscured quasars. The new quasars have no spectra that can be seen and are thought to be hidden behind the dust of the galaxy itself rather than just a dust ring. The presence of lots of dust in a galaxy indicates that stars are still forming there. The researchers found 21 examples of these lost quasars in a relatively small patch of sky. All of the objects were confirmed as quasars by the National Radio Astronomy Observatory's Very Large Array radio telescope, New Mexico, and the Particle Physics and Astronomy Research Council's William Hershel Telescope on La Palma.

Alejo Martinez-Sansigre from the University of Oxford explains "We were missing a large population of obscured quasars, which had been inferred from studies at X-ray frequencies. This newly discovered population is large enough to account for the X-ray background, and now we wish to find out why there are more obscured quasars than unobscured ones".

From their study, the team believes that there are more quasars hidden by dust than not and that most black holes grow in short, efficient bursts at the heart of growing galaxies.

Professor Richard Wade, Chief Executive of the Particle Physics and Astronomy Research Council which supports the University of Oxford Astrophysics group said "The new population of Quasars suggest that throughout cosmic history most black holes grow in the heart of dusty active galaxies with stars still forming."

Source: PPARC

Explore further: Star formation near supermassive black holes

Related Stories

Star formation near supermassive black holes

June 22, 2015

Most if not all galaxies are thought to host a supermassive black hole in their nuclei, a finding that is both one the most important and amazing in modern astronomy. A supermassive black hole grows by accreting mass, and ...

Quasar Dust in the Early Universe

March 26, 2010

(PhysOrg.com) -- Quasars are galaxies whose very bright cores are thought to contain massive black holes around which disks are actively accreting matter.

Chandra suggests black holes gorging at excessive rates

April 30, 2015

A group of unusual giant black holes may be consuming excessive amounts of matter, according to a new study using NASA's Chandra X-ray Observatory. This finding may help astronomers understand how the largest black holes ...

Could the Milky Way become a quasar?

February 27, 2015

A quasar is what you get when a supermassive black hole is actively feeding on material at the core of a galaxy. The region around the black hole gets really hot and blasts out radiation that we can see billions of light-years ...

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

Shedding light on millipede evolution

August 2, 2015

As an National Science Foundation (NSF)-funded entomologist, Virginia Tech's Paul Marek has to spend much of his time in the field, hunting for rare and scientifically significant species. He's provided NSF with an inside ...

Better together: graphene-nanotube hybrid switches

August 2, 2015

Graphene has been called a wonder material, capable of performing great and unusual material acrobatics. Boron nitride nanotubes are no slackers in the materials realm either, and can be engineered for physical and biological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.