Volcanoes inner workings disclosed when the Earth moved

August 9, 2005

While volcanologists can see the dome of the Soufriere Hills Volcano on the island of Montserrat grow and collapse, it takes instrumentation to delve beneath the surface. Now, Penn State geologists, using tiltmeter measurements, have investigated a shallow area under the dome and what they found was not quite what they expected.

"The Soufriere Hills Volcano has been building a lava dome, collapsing and rebuilding a dome since 1995, when it first erupted," says Dr. Christina Widiwijayanti, postdoctoral researcher in geosciences, working with Dr. Barry Voight, professor of geosciences. "We are working with data collected from tiltmeters in 1997 to try to understand the volcano's behavior and what is happening inside."

Voight had placed several tiltmeters around the crater rim of the volcano in 1996-97, but no more than two were ever working at once and during the important June 25, 1997 dome collapse, only one was operational. However, from a record the previous month, two tiltmeters recorded the cycle of pressurization and depressurization that took place under the dome on a 3 to 30-hour cycle.

A tiltmeter, like a carpenter's level, measures the local angular movement of the Earth. With synchronized data from two tiltmeters, the researchers, who included Dr. Amanda Clarke a former Penn State graduate student who is now an assistant professor at Arizona State University, and Dr. Derek Elsworth, professor of energy and geo-environmental engineering, could determine the depth of the source region causing the tilting near the dome. They reported their work in a recent issue of Geophysical Research Letters.

"But, what we really would like to know is the configuration of the pressurized area, its shape and size, as well as position," says Widiwijayanti. "We know the size and shape of the conduit system that delivers the lava, but our results suggest that a more extensive region is involved in the pressurization."

The researchers found the pressure to be centered about a half mile below the dome or nearly 2.5 miles above the magma chamber feeding the surface flow of lava. The magma tube or conduit in this area is about 100 feet in diameter, but, using tiltmeter data collected during the collapse, the researchers found that the region undergoing pressurization and depressurization is between about 700 and 1100 feet in diameter. The researchers used a sphere and a cylinder to model the pressurized area. The known size of the dome collapse could be used to calibrate the source pressure.

"When the dome collapses, the area should be rebounding, going up, but the tiltmeter shows that it goes down" said Widiwijayanti. "There must be something related to depressurizing the system in the volcano that does this."

The researchers believe that the region around the conduit is fractured, with the pore spaces filled by hot water and gas. "When the volcano conduit at depth is under pressure, super-heated steam and other gases can leak out of the conduit and raise the pressure in the fractured rock over a broad region. That is what we think we are seeing as the pressurized zone," says Voight.

The 1997 dome collapse, with 8.5 million cubic yards of lava and talus, was not the largest at the Soufriere Hills Volcano, although 19 people were killed by it and the event rewrote the political history of Montserrat. In July 2003 the dome collapse produced 275 million cubic yards, the largest on Earth in historic time.

The 2003 collapse was recorded using new and more varied equipment installed by the CALIPSO project (Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory), funded by the National Science Foundation and the U.K. Environment Research Council. Voight is project director of the consortium, which involves a number of institutions in the U.S. and U.K. While researchers recorded the 1997 data before the initiation of CALIPSO, the analysis of both data sets is part of the project.

Source: Penn State

Explore further: Mount St. Helens, still steaming, holds the world's newest glacier

Related Stories

A look back 35 years after Mount St. Helens' deadly eruption

May 16, 2015

Thirty-five years ago, Mount St. Helens in southwest Washington state erupted, killing 57 people, blasting more than 1,300 feet off the top and raining volcanic ash for miles around. Today, the volcano has become a world-class ...

The science of sinkholes

March 6, 2013

A devastating sinkhole occurred in Florida on February 28, 2013, raising questions and concerns about this incredible phenomenon. Around 20% of the U.S. lies in areas susceptible to sinkhole events, highlighting the need ...

Possible trigger for volcanic 'super-eruptions' found

October 12, 2011

The "super-eruption" of a major volcanic system occurs about every 100,000 years and is considered one of the most catastrophic natural events on Earth, yet scientists have long been unsure about what triggers these violent ...

Tenerife island landscape reveals explosive past

October 2, 2011

Volcanologists from the University of Leicester have uncovered one of the world's best-preserved accessible examples of a monstrous landslide that followed a huge volcanic eruption on the Canarian island of Tenerife.

Recommended for you

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.