Researchers Develop New Source of Energy Using Nanotechnology

August 16, 2005

Reaction Can Occur in Microseconds on Surfaces as Small as Microchips

Countries across the world continue to search for new ways to create energy. As our current means for energy continue to deplete, thus making them more expensive to generate, governments are searching for new energy resources. Researchers at the University of Missouri-Columbia have developed a more efficient source of energy involving nano-scale particles that take only microseconds to create and can be developed on a surface as small as a microchip.

"This technology is considerably less expensive than existing chemical and physical processes," said Shubhra Gangopadhyay, professor of electrical engineering at MU. "It creates high amounts of mechanical and thermal energy and can convert that energy into electrical energy. So, the possibilities are endless in terms of what this energy can do."

The energy is developed using solid state energetic material consisting of fuel and oxidizer. The nano-engineered energetic material generates a tremendous amount of thermal and mechanical energy when ignited. Electric power is generated using the thermoelectric effect. The microfabricated devices coated with the energetic material are capable of producing tens of joules, which are units of energy, in the fraction of a second, which can be used for pulsed power applications or can be stored in charge storage devices for later use in portable electronics.

Power also is generated by converting mechanical energy produced by shock waves into electrical energy utilizing piezoelectric materials, which are materials where the positive and negative electrical charges are separated, but symmetrically distributed, so that the material overall is electrically neutral. MU researchers currently are working on the process to couple the thermoelectric and piezoelectric effect to produce energy on a single chip.

Gangopadhyay says there currently are no obstacles to overcome with the research. She points out that the process can be done on glass without affecting its surface and does not necessarily need electricity to start it. All that is needed is friction or impact.

The researchers currently are seeking a patent for this technology.

Source: University of Missouri

Explore further: Could stronger, tougher paper replace metal?

Related Stories

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Insights into catalytic converters

July 24, 2015

Modern catalytic converters for the treatment of exhaust gases in vehicles with a combustion engine have largely contributed to reducing of pollutant emissions. By oxidation or reduction, i.e. the donation or acceptance of ...

Benefits of strip-till surface after five-year study

July 23, 2015

How does style of tilling make a difference in crop success? The blades on a till don't simply chop up soil and move it around. They blend dead plant material left from harvest into the soil. They also expose wetter soil ...

Recommended for you

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.