Nottingham research sheds new light on how chemical reactions work

August 19, 2005

Research from The University of Nottingham’s School of Chemistry has contributed to a breakthrough in the complex world of understanding how the quantum mechanics of chemical reactions work.

By understanding chemical processes better chemists will be able to conduct experiments more quickly and accurately, and make new chemicals more cheaply and efficiently.

A study led by Dr Stuart Althorpe, Reader in Physical Chemistry, is published in the August 19 issue of the prestigious international journal Science.

The research was carried out as part of a long-standing collaboration with a colleague at the University of Durham, Dr Eckart Wrede, and provides a leap forward for scientists all over the world.

Dr Althorpe said: “This work provides another vital piece of the jigsaw for understanding how chemical reactions work.

“Since the late 1920s chemists have been trying to gain a better understanding of all the different factors that occur during a chemical reaction particularly in terms of quantum mechanics — or put simply, how atoms and molecules behave during a chemical reaction. Our research takes us an important step closer to fully understanding these chemical processes in the greatest possible detail.”

Dr Wrede added: “This research will be helpful to solve reactions which can cause pollution in combustion processes or in the atmosphere.

“It can help to narrow down which reactions are the most polluting and should be examined more urgently to find ways to reduce their effects.”

The Nottingham group used a sophisticated supercomputer, the £5m High Performance Computing (HPC) facility, to calculate the quantum behaviour of the atoms and molecules throughout a chemical reaction. The HPC, which had its official launch at the University Park campus earlier this year, is one of the world’s most powerful supercomputers and can perform three million million calculations per second.

The Durham group then created a ‘billiard ball movie’ which allowed them to watch the motion of the atoms and molecules and learn more about how they reacted with each other. They found that only in certain situations did the movement of atoms and molecules speed up or slow down a chemical reaction.

Professor David Clary, of Oxford University, has written a Science Perspectives article on the research in the same issue of Science. He said: "The clever paper by Dr Althorpe and co-workers is a novel and definitive theoretical study on the simplest chemical reaction of hydrogen atoms with hydrogen molecules."

Source: University of Nottingham

Explore further: How to look for a few good catalysts

Related Stories

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

Understanding the molecular origin of epigenetic markers

July 28, 2015

Researchers at the Institute for Research in Biomedicine (IRB Barcelona), Cambridge University and New York University, led by Modesto Orozco, Group Leader at IRB Barcelona, Director of Life Sciences at the Barcelona Supercomputing ...

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

Acetic acid as a proton shuttle in gold chemistry

July 24, 2015

A recently published study gives a vivid example of unusual chemical reactivity associated with organogold complexes. Using modern physical methods and computational studies, the authors propose a reaction mechanism in which ...

Recommended for you

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Dense star clusters shown to be binary black hole factories

July 29, 2015

The coalescence of two black holes—a very violent and exotic event—is one of the most sought-after observations of modern astronomy. But, as these mergers emit no light of any kind, finding such elusive events has been ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.