Writing at the Nanoscale: 'Electro Pen' may impact a host of developing nanotechnologies

Aug 29, 2005
'Electro Pen' may impact a host of developing nanotechnologies

At the U.S. Department of Energy's Brookhaven National Laboratory, scientists have developed a new chemical "writing" technique that can create lines of "ink" only a few tens of nanometers, or billionths of a meter, in width.

Image: "Written" with the Electro Pen, the lines forming these words are 150 nanometers wide and less than one nanometer high. They are made of organic molecules.

"Our new 'writing' method opens up many new possibilities for creating nanoscale patterns and features on surfaces. This may have a significant impact on developing nanotechnologies that involve nanopatterning, such as molecular electronics -- tiny circuits built using single organic molecules," said Brookhaven Lab physicist Yuguang Cai. Cai will discuss the method at the 230th American Chemical Society national meeting in Washington, D.C., on Sunday, August 28, at 12 p.m. in room 8-9 of the Renaissance Hotel.

Cai and his colleagues call the technique "Electro Pen Nanolithography" (EPN). They sweep a very thin metal tip across a film of organic molecules. The tip carries an electric voltage, which causes the region under it to "oxidize," or undergo a reaction that changes the chemical makeup of the film. In a single sweep of the pen, organic "ink" molecules are transferred from the tip to the oxidized regions, creating an extremely thin line.

Physicists Benjamin Ocko (L) and Yuguang Cai.
Physicists Benjamin Ocko (L) and Yuguang Cai.

Each line is just one molecule thick, but the researchers can produce multilayered patterns by writing over the existing pattern. This gives them the ability to create three-dimensional nanoscale "landscapes." Moreover, by turning off the voltage, they can use the tip as a tiny "scanner" to "read" and create an image of the pattern just written.

With further research, EPN may have the ability to "write" biomolecular materials, such as proteins, onto surfaces. These nanoscale protein deposits might, for example, serve as biosensors.

This research is supported by the Office of Basic Energy Sciences within the U.S. Department of Energy's Office of Science.

Explore further: Spiraling laser pulses could change the nature of graphene

Related Stories

Researchers develop new way to manufacture nanofibers

May 13, 2015

Researchers at the University of Georgia have developed an inexpensive way to manufacture extraordinarily thin polymer strings commonly known as nanofibers. These polymers can be made from natural materials ...

Recommended for you

Self-replicating nanostructures made from DNA

3 hours ago

(Phys.org)—Is it possible to engineer self-replicating nanomaterials? It could be if we borrow nature's building blocks. DNA is a self-replicating molecule where its component parts, nucleotides, have specific ...

Could computers reach light speed?

5 hours ago

Light waves trapped on a metal's surface travel nearly as fast as light through the air, and new research at Pacific Northwest National Laboratory shows these waves, called surface plasmons, travel far enough ...

Non-aqueous solvent supports DNA nanotechnology

May 27, 2015

Scientists around the world are using the programmability of DNA to assemble complex nanometer-scale structures. Until now, however, production of these artificial structures has been limited to water-based ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.