Nanomaterials to Mimic Cells

August 23, 2005

Mimicking a real living cell by combining artificial membranes and nanomaterials in one construction is the aim of a new research grant at UC Davis. The Nanoscale Integrated Research Team grant, funded by the National Science Foundation with $1.6 million over four years, will study membranes mounted on aerogels, solid materials riddled with so many tiny pores that they are mostly empty.

All living cells are wrapped in a double-layered membrane of oily lipid molecules. Cell membranes are studded with proteins and other molecules, governing how food and wastes get in and out of a cell, how cells signal to and react to their environment, and how they divide and grow.

Currently, researchers studying artificial membranes mount them on solid substrates such as gold, glass or polymers, but that means that only one side of the membrane is accessible, said Subhash Risbud, professor of chemical engineering and materials science at UC Davis and principal investigator on the project.

Using the porous aerogel as a support, the researchers should be able to access and study both sides of the membrane.

"The hope is to build artificial membrane systems that are as close to a biological membrane as we can get right now," said Marjorie Longo, associate professor of chemical engineering and materials science at UC Davis.

The studies could lead to new insights into how real cell membranes behave, for example in the platelet cells that form blood clots.

Source: UC Davis

Explore further: Learning how muscle cells feel the pull of gravity

Related Stories

Learning how muscle cells feel the pull of gravity

September 30, 2015

People can easily feel the presence - or absence - of gravity. Our individual cells actually may be able to sense gravity, too, and that ability could play a role in the loss of muscle that occurs when humans spend time in ...

Researchers disguise drugs as platelets to target cancer

September 29, 2015

Researchers have for the first time developed a technique that coats anticancer drugs in membranes made from a patient's own platelets, allowing the drugs to last longer in the body and attack both primary cancer tumors and ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Sequencing DNA in the palm of your hand

September 30, 2015

Much like the miniature, goggle-wearing yellow organisms of the big screen that live to serve, a tiny new device called the MinION, developed by Oxford Nanopore Technologies, promises to help scientists sequence DNA in space. ...

Recommended for you

Trade in invasive plants is blossoming

October 3, 2015

Every day, hundreds of different plant species—many of them listed as invasive—are traded online worldwide on auction platforms. This exacerbates the problem of uncontrollable biological invasions.

How much for that Nobel prize in the window?

October 3, 2015

No need to make peace in the Middle East, resolve one of science's great mysteries or pen a masterpiece: the easiest way to get yourself a Nobel prize may be to buy one.

Drone market to hit $10 billion by 2024: experts

October 3, 2015

The market for military drones is expected to almost double by 2024 to beyond $10 billion (8.9 billion euros), according to a report published Friday by specialist defence publication IHS Jane's Intelligence Review.

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.