The Big Blue

August 18, 2005
The Big Blue

Liquid-crystal 'blue phases' can be just about any colour in the rainbow. This makes them potentially useful for all sorts of applications, from electrically switchable colour displays to light filters and lasers. But blue phases have a significant limitation: they exist over a very small range in temperature, typically no more than two degrees Celsius at most.

Image: Optical textures of the wide temperature range liquid crystal blue phase.

The Department's Professor Harry Coles and Dr Mikhail Pivnenko report a solution to this instability in this week's scientific journal Nature. They have discovered a class of blue-phase liquid crystals that remain stable over a very much wider range: from 16 to 60 degrees. The researchers show that their ultrastable blue phases could find some useful applications in optical technology.

Typically, liquid crystals are made from rod-like molecules that line up in at least one direction while remaining mobile and disorderly in the others. In blue phases, this alignment of molecules takes a complicated form: the molecules assemble into cylindrically shaped arrays in which the direction of alignment twists in a helix, while the helices themselves criss-cross in three dimensions. The structure repeats regularly every several hundred nanometres, which means that it reflects visible light of a particular colour.

The Big Blue 2

Image above: The colours show the differently oriented polydomain platelets.

The new blue phases are made from molecules in which two stiff, rod-like segments are linked by a flexible chain. The researchers say that this unusual structure is what makes the blue phase so stable. They show that the colour of the reflected light can be switched by applying an electric field to the material, and that this could be used to produce three-colour (red-green-blue) pixels for full-colour displays.

Link: Nature article

Source: Cambridge University

Explore further: Copenhagen company to re-invent fresh air for city dwellers

Related Stories

Copenhagen company to re-invent fresh air for city dwellers

November 10, 2015

Breathe in Beijing, and you might as well smoke 40 cigarettes a day. Live in London and a significant slice of your taxes go to paying fines for your cities illegal air quality. Be sporty in Santiago but refrain from running ...

Atomtronics: A new phase

February 19, 2012

Just as NASA engineers test new rocket designs in computer studies before committing themselves to full prototypes, so physicists will often model matter under various circumstances to see whether something new appears. This ...

Researchers decipher the molecular basis of blue-green algae

August 1, 2011

Under normal conditions, cyanobacteria, also termed blue-green algae, build up energy reserves that allow them to survive under stress such as long periods of darkness. They do this by means of a molecular switch in an enzyme. ...

Exotic discovery made in soft polymer

January 4, 2011

Professor Frank S. Bates and his research team at the University of Minnesota in Minneapolis have discovered an unusual type of soft material that was conceived of over 50 years ago, but has never before been found in a plastic--although ...

Designing exascale computers

July 23, 2014

"Imagine a heart surgeon operating to repair a blocked coronary artery. Someday soon, the surgeon might run a detailed computer simulation of blood flowing through the patient's arteries, showing how millions of red blood ...

Recommended for you


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.