Bacteria that bind toxic metals: Are they the future of nuclear waste cleanup?

August 26, 2005 feature
Bacteria that bind toxic metals: Are they the future of nuclear waste cleanup?

by Gina M. Buss

Researchers in Germany have found a way to use bacteria which are able to accumulate toxic metals and survive in nuclear waste as a way of cleaning up toxic dumps.

230,000 tons of nuclear waste: that’s how much toxic metal can accumulate after 30 years of mining uranium - and that’s just one waste pile. With all the nuclear waste production throughout the world, this toxic metal is literally “piling up” in more and more places, and is encroaching on inhabited areas.

During the process of generating nuclear power and nuclear weapons, radionuclides like uranium are discharged into the environment. These metals pose a serious ecological and health threat and usually contaminate the soil, sediment, and waters surrounding the waste piles.

Conventional methods of cleaning up these toxic wastes are often expensive and not very effective. The environment is in dire need of a novel approach to waste clean-up and researchers in Germany may have the answer.

A recent study from the Institutes of Radiochemistry and Nuclear Physics in Dresden outlines a way of using bioremediation as a means for eliminating nuclear waste. Bioremediation is a process that uses microorganisms to return an environment back to its original condition after it has been exposed to contaminants.

Nuclear waste piles, such as the one in southeast Germany that’s highlighted in the
study, are a reservoir for certain strains of bacteria. These bacteria have evolved special mechanisms to survive in this waste that would normally be toxic to other types of microorganisms.

The strain Bacillus sphaericus has evolved a crystalline surface layer (S-layer) that covers the outside of the cell. This layer is more than a protective barrier to the bacteria, it serves to accumulate high amounts of toxic metals such as uranium, lead, copper, aluminum, and cadmium.

Researchers are currently seeking out ways to exploit the bacteria’s strategies. New technology is incorporating the S-layer structure onto silicon wafers, metals, polymers, nanoclusters, and bioceramic discs. All of these products could be used to remove metals from contaminated water and soil.

Additionally, these technologies could be used to recover precious metals such as platinum and palladium from industrial waste sites and recycle them for making electronic products.

Bacteria may be the template for new technology aimed at nuclear waste removal. The time may be near when synthetic S-layer discs can be placed in contaminated areas and act as sponges, cleaning up a big toxic mess.

Reference:

Pollman K, Raff J, Merroun M, Fahmy K, and Selenska-Pobell S.
Biotechnology Advances. 2005. Article in press.

by Gina M. Buss, Copyright 2005 PhysOrg.com

Explore further: What's ahead for Japan's Fukushima nuclear plant

Related Stories

Postpone the nuclear waste decision

April 2, 2012

Although nuclear waste has been produced for a long time, there is still no good way to discard the highly toxic material, which remains hazardous for up to 130 000 years. In his new book titled Nuclear Waste Management and ...

Recommended for you

New Horizons data hint at underground ocean

July 30, 2015

Pluto wears its heart on its sleeve, and that has scientists gleaning intriguing new facts about its geology and climate. Recent data from NASA's New Horizons probe—which passed within 7,800 miles of the surface on July ...

The sound of music, according to physicists

July 30, 2015

Joshua Bodon is sick of hearing "Somewhere Over the Rainbow." More specifically, he's sick of hearing one 25-second clip of the song repeated more than 550 times.

Power grid forecasting tool reduces costly errors

July 30, 2015

Accurately forecasting future electricity needs is tricky, with sudden weather changes and other variables impacting projections minute by minute. Errors can have grave repercussions, from blackouts to high market costs. ...

Unusual red arcs spotted on icy Saturn moon Tethys

July 30, 2015

Like graffiti sprayed by an unknown artist, unexplained arc-shaped, reddish streaks are visible on the surface of Saturn's icy moon Tethys in new, enhanced-color images from NASA's Cassini spacecraft.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.