Spitzer Finds Life Components in Young Universe

July 29, 2005

NASA's Spitzer Space Telescope has found the ingredients for life all the way back to a time when the universe was a mere youngster.

Using Spitzer, scientists have detected organic molecules in galaxies when our universe was one-fourth of its current age of about 14 billion years. These large molecules, known as polycyclic aromatic hydrocarbons, are comprised of carbon and hydrogen. The molecules are considered to be among the building blocks of life.

These complex molecules are very common on Earth. They form any time carbon-based materials are not burned completely. They can be found in sooty exhaust from cars and airplanes, and in charcoal broiled hamburgers and burnt toast.

The molecules, pervasive in galaxies like our own Milky Way, play a significant role in star and planet formation. Spitzer is the first telescope to see these molecules so far back in time.

"This is 10 billion years further back in time than we've seen them before," said Dr. Lin Yan of the Spitzer Science Center at the California Institute of Technology in Pasadena, Calif. Yan is lead author of a study to be published in the August 10 issue of the Astrophysical Journal. Previous missions -- the Infrared Astronomical Satellite and the Infrared Space Observatory -- detected these types of galaxies and molecules much closer to our own Milky Way galaxy. Spitzer's sensitivity is 100 times greater than these previous infrared telescope missions, enabling direct detection of organics so far away.

Since Earth is approximately four-and-a-half billion years old, these organic materials existed in the universe well before our planet and solar system were formed and may have even been the seeds of our solar system.

Spitzer found the organic compounds in galaxies where intense star formation had taken place over a short period of time. These "flash in the pan" starburst galaxies are nearly invisible in optical images because they are very far away and contain large quantities of light-absorbing dust. But the same dust glows brightly in infrared light and is easily spotted by Spitzer.

Spitzer's infrared spectrometer split the galaxies' infrared light into distinct features that revealed the presence of organic components. These organic features gave scientists a milepost to gauge the distance of these galaxies. This is the first time scientists have been able to measure a distance as great as 10-billion light years away using the spectral fingerprints of polycyclic aromatic hydrocarbons.

"These complex compounds tell us that by the time we see these galaxies, several generations of stars have already been formed," said Dr. George Helou of the Spitzer Science Center, a co-author of the study. "Planets and life had very early opportunities to emerge in the universe."

Other co-authors include Ranga-Ram Chary, Lee Armus, Harry Tepliz, David Frayer, Dario Fadda, Jason Surace, and Philip Choi, all of the Spitzer Science Center.

The Jet Propulsion Laboratory manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech. Caltech manages JPL for NASA. Spitzer's infrared spectrograph was built by Cornell University, Ithaca, N.Y. Its development was led by Dr. Jim Houck of Cornell.

The Infrared Astronomical Satellite was a joint scientific project sponsored by the United States, the Netherlands, and the United Kingdom. The Infrared Space Observatory was a European Space Agency mission with Japan's Institute of Space and Astronautical Science and NASA.

For information on the Spitzer Space Telescope visit: www.spitzer.caltech.edu/Media

Explore further: The frontier fields: Where primordial galaxies lurk

Related Stories

The frontier fields: Where primordial galaxies lurk

September 28, 2016

In the ongoing hunt for the universe's earliest galaxies, NASA's Spitzer Space Telescope has wrapped up its observations for the Frontier Fields project. This ambitious project has combined the power of all three of NASA's ...

Using oxygen as a tracer of galactic evolution

October 7, 2016

A new study led by University of California, Riverside astronomers casts light on how young, hot stars ionize oxygen in the early universe and the effects on the evolution of galaxies through time.

Spitzer Space Telescope begins 'Beyond' phase

August 26, 2016

Celebrating the spacecraft's ability to push the boundaries of space science and technology, NASA's Spitzer Space Telescope team has dubbed the next phase of its journey "Beyond."

Image: 'Enterprise' nebulae seen by Spitzer

September 9, 2016

Just in time for the 50th anniversary of the TV series "Star Trek," which first aired September 8th,1966, a new infrared image from NASA's Spitzer Space Telescope may remind fans of the historic show.

NASA team probes peculiar age-defying star

August 29, 2016

For years, astronomers have puzzled over a massive star lodged deep in the Milky Way that shows conflicting signs of being extremely old and extremely young.

Recommended for you

Shocks in the early universe could be detectable today

October 27, 2016

(Phys.org)—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...

Ten months in the air without landing

October 27, 2016

Common swifts are known for their impressive aerial abilities, capturing food and nest material while in flight. Now, by attaching data loggers to the birds, researchers reporting in the Cell Press journal Current Biology ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.