Scientists measure how deep 'Deep Impact' was, with X-rays

July 8, 2005

Here come the X-rays, on cue. Scientists studying the Deep Impact collision using NASA's Swift satellite report that comet Tempel 1 is getting brighter and brighter in X-ray light with each passing day.

The X-rays provide a direct measurement of how much material was kicked up in the impact. This is because the X-rays are created by the newly liberated material lifted into the comet's thin atmosphere and illuminated by the high-energy solar wind from the sun. The more material liberated, the more X-rays are produced.

Swift data of the water evaporation on comet Tempel 1 also may provide new insights into how solar wind can strip water from planets such as Mars.

"Prior to its rendezvous with the Deep Impact probe, the comet was a rather dim X-ray source," said Paul O'Brien of the Swift team at the University of Leicester. "How things change when you ram a comet with a copper probe traveling over 20,000 miles per hour. Most of the X-ray light we detect now is generated by debris created by the collision. We can get a solid measurement of the amount of material released."

"It takes several days after an impact for surface and sub-surface material to reach the comet's upper atmosphere, or coma," said Dick Willingale, also of the University of Leicester. "We expect the X-ray production to peak this weekend. Then we will be able to assess how much comet material was released from the impact."

Based on preliminary X-ray analysis, O'Brien estimates that several tens of thousands of tons of material were released, enough to bury Penn State's football field under 30 feet of comet dust. Observations and analysis are ongoing at the Swift Mission Operations Center at Penn State as well as in Italy and the United Kingdom.

Swift is providing the only simultaneous multi-wavelength observation of this rare event, with a suite of instruments capable of detecting visible light, ultraviolet light, X-rays and gamma rays. Different wavelengths reveal different secrets about the comet.

The Swift team hopes to compare the satellite's ultraviolet data, collected hours after the collision, with the X-ray data. The ultraviolet light was created by material entering into the lower region of the comet's atmosphere; the X-rays come from the upper regions. Swift is a nearly ideal observatory for making these comet studies, as it combines both a rapidly responsive scheduling system with both X-ray and optical/UV instruments in the same satellite.

"For the first time, we can see how material liberated from a comet's surface migrates to the upper reaches of its atmosphere," said John Nousek, director of Mission Operations at Penn State. "This will provide fascinating information about a comet's atmosphere and how it interacts with the solar wind. This is all virgin territory."

Nousek said Deep Impact's collision with comet Tempel 1 is like a controlled laboratory experiment of the type of slow evaporation process from solar wind that took place on Mars. The Earth has a magnetic field that shields us from solar wind, a particle wind composed mostly of protons and electrons moving at nearly light speed. Mars lost its magnetic field billions of years ago, and the solar wind stripped the planet of water.

Comets, like Mars and Venus, have no magnetic fields. Comets become visible largely because ice is evaporated from their surface with each close passage around the Sun. Water is dissociated into its component atoms by the bright sunlight and swept away by the fast-moving and energetic solar wind. Scientists hope to learn about this evaporation process on Tempel 1 now occurring quickly -- over the course of a few weeks instead of a billion years -- as the result of a planned, human intervention.

Swift's "day job" is detecting distant, natural explosions called gamma-ray bursts and creating a map of X-ray sources in the universe. Swift's extraordinary speed and agility enable scientists to follow Tempel 1 day by day to see the full effect from the Deep Impact collision.

For the latest news on Swift analysis of comet Tempel 1, refer to:
-- www.science.psu.edu/alert/Swift-Deep-Impact.htm
-- swift.gsfc.nasa.gov and
-- swift.sonoma.edu/

Source: Penn State

Related Stories

Recommended for you

Microsoft describes hard-to-mimic authentication gesture

August 1, 2015

Photos. Messages. Bank account codes. And so much more—sit on a person's mobile device, and the question is, how to secure them without having to depend on lengthy password codes of letters and numbers. Vendors promoting ...

Netherlands bank customers can get vocal on payments

August 1, 2015

Are some people fed up with remembering and using passwords and PINs to make it though the day? Those who have had enough would prefer to do without them. For mobile tasks that involve banking, though, it is obvious that ...

Model shows how surge in wealth inequality may be reversed

July 30, 2015

(Phys.org)—For many Americans, the single biggest problem facing the country is the growing wealth inequality. Based on income tax data, wealth inequality in the US has steadily increased since the mid-1980s, with the top ...

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.