Nanothinx: High-Purity and Low-Cost Production of Multi-Wall and Single-Wall Carbon Nanotubes

July 28, 2005

Nanothinx is a young spin off company, which focuses on the high-purity and low-cost production of multi-wall (MWNT) and single-wall nanotubes (SWNT) as well as on some of their uses. The company has spun-off from the Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT) situated in Patras, one of the seven Institutes of the Foundation for Research and Technology Hellas (FORTH), which is one of the most important research establishments in Greece.

The production methods used by Nanothinx are based on the synthesis of carbon nanotubes with catalytic chemical vapour deposition (CCVD or CVD) from hydrocarbon feeds. The advantages of Nanothinx technology are:
1. Development of carbon nanotubes at low cost. One of the principal characteristics that accounts for the low cost of the products is the low cost of the novel catalysts that have been developed by Nanothinx scientists.
2. Higher purity of the as-prepared carbon nanotubes than that of the commercially available carbon nanotubes.
3. Minimal levels of impurities (e.g., amorphous carbon) that degrade CNTs properties.
4. High MWNTs and SWNTs production rates.

The pilot unit currently used is dedicated to the production of multi-wall and single-wall carbon nanotubes. In parallel, work is being carried out for the scaling up of the production methodologies to enable the production of commercial quantities according to the products applications in the industrial market. Nanothinx is in a position to supply potential clients with high-purity (97% as prepared) multi-wall nanotubes in quantities ranging from grams to several hundreds of grams, and single-wall nanotubes with high purity (70% as prepared) at quantities ranging from milligrams to tens of grams.

In addition to nanotubes, Nanothinx also offers R&D services on the process engineering of systems in which nanotubes and other nanomaterials are produced or employed. Representative research projects are:
1) Surface modification and tailoring of the chemical functionality of carbon nanotubes towards polymer matrix structures; Study of the nanotubes distribution and dispersion capability and determination of the nanocomposites tensile strength and nanotubes orientation.
2) Development and characterization of CCVD nanostructured materials based on aluminium oxide and carbon.

The spin-off is open to joint business and joint R&D activities related to nanostructured materials in which nanotubes are one of their constituent components, such as composite materials.

Nanotubes are seen as the “building blocks” of the future. Their high electrical conductivity, excellent mechanical strength and high thermal conductivity render carbon nanotubes (CNTs) ideal materials for a variety of industrial applications, such as automotive, gas (e.g., hydrogen) storage, fuel cells, microelectronics, biosensors and chemical sensors, polymer and ceramic reinforcement etc.

Explore further: Controlling ultrasound with 3-D printed devices

Related Stories

Controlling ultrasound with 3-D printed devices

October 25, 2016

Ultrasound is more than sound. Obstetricians use it to peer inside a woman's uterus and observe a growing baby. Surgeons use powerful beams of ultrasound to destroy cancer cells. Researchers fire ultrasound into materials ...

Apple patent reveals idea for fingerprint technology

October 6, 2016

(Tech Xplore)—"Capacitive fingerprint sensor including an electrostatic lens" is the title of the patent filed in September 2014.The inventor listed is Jean-Marie Bussat. This is being talked about in this week's tech press ...

CO2 to fish food, other ideas advance in $20M XPRIZE contest

October 17, 2016

With dreams of turning carbon dioxide into everything from concrete to fish food, teams from six countries have advanced beyond the first phase of a $20 million XPRIZE contest to find profitable uses for CO2 emitted by power ...

For first time, carbon nanotube transistors outperform silicon

September 2, 2016

For decades, scientists have tried to harness the unique properties of carbon nanotubes to create high-performance electronics that are faster or consume less power—resulting in longer battery life, faster wireless communication ...

Recommended for you

More than 15,000 near-Earth objects and counting

October 28, 2016

The international effort to find, confirm and catalogue the multitude of asteroids that pose a threat to our planet has reached a milestone: 15 000 discovered – with many more to go.

How planets like Jupiter form

October 28, 2016

Young giant planets are born from gas and dust. Researchers of ETH Zürich and the Universities of Zürich and Bern simulated different scenarios relying on the computing power of the Swiss National Supercomputing Centre ...

Novel light sources made of 2-D materials

October 28, 2016

Physicists from the University of Würzburg have designed a light source that emits photon pairs, which are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.