Nanothinx: High-Purity and Low-Cost Production of Multi-Wall and Single-Wall Carbon Nanotubes

July 28, 2005

Nanothinx is a young spin off company, which focuses on the high-purity and low-cost production of multi-wall (MWNT) and single-wall nanotubes (SWNT) as well as on some of their uses. The company has spun-off from the Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT) situated in Patras, one of the seven Institutes of the Foundation for Research and Technology Hellas (FORTH), which is one of the most important research establishments in Greece.

The production methods used by Nanothinx are based on the synthesis of carbon nanotubes with catalytic chemical vapour deposition (CCVD or CVD) from hydrocarbon feeds. The advantages of Nanothinx technology are:
1. Development of carbon nanotubes at low cost. One of the principal characteristics that accounts for the low cost of the products is the low cost of the novel catalysts that have been developed by Nanothinx scientists.
2. Higher purity of the as-prepared carbon nanotubes than that of the commercially available carbon nanotubes.
3. Minimal levels of impurities (e.g., amorphous carbon) that degrade CNTs properties.
4. High MWNTs and SWNTs production rates.

The pilot unit currently used is dedicated to the production of multi-wall and single-wall carbon nanotubes. In parallel, work is being carried out for the scaling up of the production methodologies to enable the production of commercial quantities according to the products applications in the industrial market. Nanothinx is in a position to supply potential clients with high-purity (97% as prepared) multi-wall nanotubes in quantities ranging from grams to several hundreds of grams, and single-wall nanotubes with high purity (70% as prepared) at quantities ranging from milligrams to tens of grams.

In addition to nanotubes, Nanothinx also offers R&D services on the process engineering of systems in which nanotubes and other nanomaterials are produced or employed. Representative research projects are:
1) Surface modification and tailoring of the chemical functionality of carbon nanotubes towards polymer matrix structures; Study of the nanotubes distribution and dispersion capability and determination of the nanocomposites tensile strength and nanotubes orientation.
2) Development and characterization of CCVD nanostructured materials based on aluminium oxide and carbon.

The spin-off is open to joint business and joint R&D activities related to nanostructured materials in which nanotubes are one of their constituent components, such as composite materials.

Nanotubes are seen as the “building blocks” of the future. Their high electrical conductivity, excellent mechanical strength and high thermal conductivity render carbon nanotubes (CNTs) ideal materials for a variety of industrial applications, such as automotive, gas (e.g., hydrogen) storage, fuel cells, microelectronics, biosensors and chemical sensors, polymer and ceramic reinforcement etc.

Explore further: Why a new transparent conducting material is sorely needed for touch screens

Related Stories

Making green fuels, no fossils required

November 2, 2015

Using solar or wind power to produce carbon-based fuels, which are commonly called fossil fuels, might seem like a self-defeating approach to making a greener world. But when the starting material is carbon dioxide, which ...

Researchers design and patent graphene biosensors

November 13, 2015

The Moscow Institute of Physics and Technology (MIPT) is patenting biosensor chips based on graphene, graphene oxide and carbon nanotubes that will improve the analysis of biochemical reactions and accelerate the development ...

Nanotechnology inspires next-generation dental materials

October 19, 2015

Have a cavity? Ask your dentist about filling it with a mixture of nanoparticles including silica and zirconia. These white fillings (known as nano-composite resins) resemble teeth better than their metal alternatives and ...

Recommended for you

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.