Nanoscale systems for early diagnosis

Jul 14, 2005

A partnership of scientists from the College of Engineering at UC Santa Barbara, Washington University in St. Louis and UC Berkeley have been awarded $12.5 million to develop nanoscale agents to provide early diagnosis and treatment of acute pulmonary and systemic vascular injury over the next five years. The organizations were selected as a collaborative "Program of Excellence in Nanotechnology" (PEN) by the National Heart Lung and Blood Institute of the National Institutes of Health (NIH).

The team, led at UCSB by Professor Craig Hawker, Director of the Materials Research Laboratory, and coordinated by Professor Karen Wooley at Washington University in St. Louis will use nanoscale materials as carriers for diagnostic systems and to deliver therapeutic agents. Hawker and Wooley working with Professor Jean Frechet, PhD, at the University of California, Berkeley, will be developing a way to trigger a breakdown of the nanoparticles after a payload, such as a drug or antiviral agent, is delivered directly to a diseased zone. Targeted nanoparticles will search out arteries that are under stress or are diseased.

The nanoscale designs are based on the concept that advanced nanotechnologies can help overcome inherent limitations of molecular imaging and therapeutic gene transfer.

"I think part of the reason we received this grant was due to UCSB's excellence in soft materials and in engineering," said Hawker. Acute vascular injury and inflammation have been chosen as general targets since they affect tissues broadly, including those of the lung and cardiovascular system.

Source: University of California - Santa Barbara

Explore further: Researchers develop ultrahigh-resolution 3D microscopy technique for electric fields

Related Stories

Chemists characterize 3-D macroporous hydrogels

Jun 30, 2015

Carnegie Mellon University chemists have developed two novel methods to characterize 3-dimensional macroporous hydrogels—materials that hold great promise for developing "smart" responsive materials that ...

Physicists shatter stubborn mystery of how glass forms

Jun 29, 2015

A physicist at the University of Waterloo is among a team of scientists who have described how glasses form at the molecular level and provided a possible solution to a problem that has stumped scientists ...

Nanowires could be the LEDs of the future

Jun 24, 2015

The latest research from the Niels Bohr Institute shows that LEDs made from nanowires will use less energy and provide better light. The researchers studied nanowires using X-ray microscopy and with this ...

Recommended for you

Study reveals new method to develop more efficient drugs

18 hours ago

A new study led by University of Kentucky researchers suggests a new approach to develop highly-potent drugs which could overcome current shortcomings of low drug efficacy and multi-drug resistance in the ...

Tiny wires could provide a big energy boost

20 hours ago

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough ...

Graphene sheets enable ultrasound transmitters

20 hours ago

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins' ability to use sound to communicate ...

Could black phosphorus be the next silicon?

22 hours ago

As scientists continue to hunt for a material that will make it possible to pack more transistors on a chip, new research from McGill University and Université de Montréal adds to evidence that black phosphorus ...

Project uses crowd computing to improve water filtration

Jul 06, 2015

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.