Detecting the Traces of Mystery Matter

July 29, 2005
A splash of subatomic particle

Using high-speed collisions between gold atoms, scientists think they have re-created one of the most mysterious forms of matter in the universe -- quark-gluon plasma. This form of matter was present during the first microsecond of the Big Bang and may still exist at the cores of dense, distant stars.

Image: A splash of subatomic particles is created by the collision of gold atom nuclei traveling at nearly the speed of light in Brookhaven National Laboratory's Relativistic Heavy Ion Collider. (Brookhaven National Laboratory/STAR Collaboration/courtesy graph)


UC Davis physics professor Daniel Cebra is one of 543 collaborators on the research. His main role was building the electronic listening devices that collect information about the collisions, a job he compared to "troubleshooting 120,000 stereo systems."

Now, using those detectors, "we look for trends in what happened during the collision to learn what the quark-gluon plasma is like," he said.

"We have been trying to melt neutrons and protons, the building blocks of atomic nuclei, into their constituent quarks and gluons," Cebra said. "We needed a lot of heat, pressure and energy, all localized in a small space."

The scientists produced the right conditions with head-on collisions between the nuclei of gold atoms. The resulting quark-gluon plasma lasted an extremely short time -- less than 10-20 seconds, Cebra said. But the collision left tracings that the scientists could measure.

"Our work is like accident reconstruction," Cebra said. "We see fragments coming out of a collision, and we construct that information back to very small points."

Quark-gluon plasma was expected to behave like a gas, but the data shows a more liquid-like substance. The plasma is less compressible than expected, which means that it may be able to support the cores of very dense stars.

"If a neutron star gets large and dense enough, it may go through a quark phase, or it may just collapse into a black hole," Cebra said. "To support a quark star, the quark-gluon plasma would need rigidity. We now expect there to be quark stars, but they will be hard to study. If they exist, they're semi-infinitely far away."

The project is led by Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, with collaborators at 52 institutions worldwide. The work was done in Brookhaven's Relativistic Heavy Ion Collider (RHIC).

Source: UC Davis

Explore further: Strange Antihyperparticle Created

Related Stories

Strange Antihyperparticle Created

March 30, 2010

(PhysOrg.com) -- Physicists, including nine from UC Davis, working at the U.S. Department of Energy's Brookhaven National Laboratory recently created some strange matter not seen since just after the Big Bang -- an "antihypertriton" ...

Recommended for you

Water on the moon?

May 30, 2016

Prior to the Apollo missions to the moon, scientists speculated that volatiles - including water - may have accumulated in permanently shaded regions at the poles. Then the Apollo era brought the return of lunar samples, ...

It's raining men! Sweden sees historic gender balance shift

May 30, 2016

Famous for its efforts to put women on an equal footing with men, Sweden is experiencing a gender balance shift that has caught the country by surprise: For the first time since record-keeping began in 1749, it now has more ...

New catalyst found for clean energy fuel

May 30, 2016

A team of UConn chemists led by professors Steven Suib and James Rusling has developed a new material that could make hydrogen capture more commercially viable and provide a key element for a new generation of cheaper, light-weight ...

Juno spacecraft crosses Jupiter / Sun gravitational boundary

May 30, 2016

Since its launch five years ago, there have been three forces tugging at NASA's Juno spacecraft as it speeds through the solar system. The sun, Earth and Jupiter have all been influential—a gravitational trifecta of sorts. ...

Image: Hubble gets in on a galactic gathering

May 30, 2016

Nearly as deep as the Hubble Ultra Deep Field, which contains approximately 10,000 galaxies, this incredible image from the Hubble Space Telescope reveals thousands of colorful galaxies in the constellation of Leo (The Lion). ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Absolute
not rated yet Apr 29, 2009
Recently, we have discovered a new process that can propose better outputs of Quark-Gluon Plasma than those of the RHIC. Mr.Tepparat Songkraw, a creator of this model, entitles his process as %u201CRelativistic Electron Repetition%u201D or %u201CRER%u201D. Its outputs are called Absolute Quark-Gluon Plasma model which is a part of Absolute Plasmon model.
Its images can be illustrated as follows:

http://www.absolutebase.com

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.