Detecting the Traces of Mystery Matter

Jul 29, 2005
A splash of subatomic particle

Using high-speed collisions between gold atoms, scientists think they have re-created one of the most mysterious forms of matter in the universe -- quark-gluon plasma. This form of matter was present during the first microsecond of the Big Bang and may still exist at the cores of dense, distant stars.

Image: A splash of subatomic particles is created by the collision of gold atom nuclei traveling at nearly the speed of light in Brookhaven National Laboratory's Relativistic Heavy Ion Collider. (Brookhaven National Laboratory/STAR Collaboration/courtesy graph)


UC Davis physics professor Daniel Cebra is one of 543 collaborators on the research. His main role was building the electronic listening devices that collect information about the collisions, a job he compared to "troubleshooting 120,000 stereo systems."

Now, using those detectors, "we look for trends in what happened during the collision to learn what the quark-gluon plasma is like," he said.

"We have been trying to melt neutrons and protons, the building blocks of atomic nuclei, into their constituent quarks and gluons," Cebra said. "We needed a lot of heat, pressure and energy, all localized in a small space."

The scientists produced the right conditions with head-on collisions between the nuclei of gold atoms. The resulting quark-gluon plasma lasted an extremely short time -- less than 10-20 seconds, Cebra said. But the collision left tracings that the scientists could measure.

"Our work is like accident reconstruction," Cebra said. "We see fragments coming out of a collision, and we construct that information back to very small points."

Quark-gluon plasma was expected to behave like a gas, but the data shows a more liquid-like substance. The plasma is less compressible than expected, which means that it may be able to support the cores of very dense stars.

"If a neutron star gets large and dense enough, it may go through a quark phase, or it may just collapse into a black hole," Cebra said. "To support a quark star, the quark-gluon plasma would need rigidity. We now expect there to be quark stars, but they will be hard to study. If they exist, they're semi-infinitely far away."

The project is led by Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, with collaborators at 52 institutions worldwide. The work was done in Brookhaven's Relativistic Heavy Ion Collider (RHIC).

Source: UC Davis

Explore further: A 'movie' of ultrafast rotating molecules at a hundred billion per second

Related Stories

Strange Antihyperparticle Created

Mar 30, 2010

(PhysOrg.com) -- Physicists, including nine from UC Davis, working at the U.S. Department of Energy's Brookhaven National Laboratory recently created some strange matter not seen since just after the Big Bang -- an "antihypertriton" ...

Recommended for you

To conduct, or to insulate? That is the question

Jul 02, 2015

A new study has discovered mysterious behaviour of a material that acts like an insulator in certain measurements, but simultaneously acts like a conductor in others. In an insulator, electrons are largely stuck in one place, ...

Soundproofing with quantum physics

Jul 02, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon ...

Extreme lab at European X-ray laser XFEL is a go

Jul 02, 2015

The Helmholtz Senate has given the green light for the Association's involvement in the Helmholtz International Beamline (HIB), a new kind of experimentation station at the X-ray laser European XFEL in Hamburg, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Absolute
not rated yet Apr 29, 2009
Recently, we have discovered a new process that can propose better outputs of Quark-Gluon Plasma than those of the RHIC. Mr.Tepparat Songkraw, a creator of this model, entitles his process as %u201CRelativistic Electron Repetition%u201D or %u201CRER%u201D. Its outputs are called Absolute Quark-Gluon Plasma model which is a part of Absolute Plasmon model.
Its images can be illustrated as follows:

http://www.absolutebase.com

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.