Mountain-building process much faster - and cooler - than previously thought

Jul 01, 2005

New 'cold crust' model may help explain other Earth-shaping events

Geologists at Queen's University have discovered that the time it takes for mountain ranges to form is millions of years shorter than previously thought.
This controversial finding could have implications for our understanding of other geological processes that shaped the Earth, says Professor James Lee and postdoctoral fellow Alfredo Camacho of Queen's Geological Sciences and Geological Engineering Department.
The study will appear in the June 30 edition of the international journal Nature.

Other members of the team are Bastiaan J. Hensen from University of New South Wales, and Jean Braun from Université de Rennes, France.

Using state-of-the-art techniques to measure the age of rocks, the researchers deciphered a pattern of ages within single crystals from rock remnants that survived continental collision. Their measurements show a 13-million-year cycle in which rocks are buried to 60 km depth, then returned to the surface. This occurred 425 million years ago during a large-scale mountain-building event called the Caledonian Orogeny.

"We were excited to be able to show, for the first time, that the duration of an orogenic' cycle [burying, then bringing rocks to the surface] is much shorter than was previously believed – only 13 million years in this case," say Drs. Camacho and Lee. "Geologically speaking, that is a very short period indeed – a mere drop in the bucket of the Earth's history." The duration of many geological processes that shape the Earth has been thought to last for hundreds of millions of years.

The study also suggests that the buildup of heat previously thought to be widespread during mountain building may instead be related to short-term events caused by either pulsed injection of hot fluids and/or friction on faults, with the overall crust remaining relatively cool. The study focused on the Caledonian Orogeny in Norway, where injections of hot fluids caused rapid fracturing of this cool crust, producing deep-seated continental earthquakes.

"By coupling geochronology with fundamental physical and mathematical principles and computer modeling, we can assess the durations of a variety of geological processes for the very first time," says Dr. Lee. "The new quantitative technique that we developed allows us to measure the duration of thermal disturbances at all scales, from small-scale intrusions of molten rocks into the crust (e.g. volcanoes) to large-scale orogenic cycles."

This unique "cold-crust" model stems from a new quantitative technique integrating geo-chronology, mathematics, physics, and basic geological principles. "It neatly explains many previously puzzling geological observations and may be relevant to other mountain-building events around the world," says Dr. Lee.

Source: Queen's University

Explore further: Spacecraft closing in on Pluto hits speed bump, but recovers

Related Stories

Why we need to keep adding leap seconds

Jul 01, 2015

Today at precisely 10am Australian Eastern Standard time, something chronologically peculiar will take place: there'll be an extra second between 09:59:59 and 10:00:00.

Mankind's unprecedented transformation of Earth

Jun 29, 2015

Human beings are pushing the planet in an entirely new direction with revolutionary implications for its life, a new study by researchers at the University of Leicester has suggested.

Iron: A biological element?

Jun 25, 2015

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Recommended for you

Uranus' moon Titania

21 hours ago

Like all of the Solar Systems' gas giants, Uranus has an extensive system of moons. In fact, astronomers can now account for 27 moons in orbit around Uranus. Of these, none are greater in size, mass, or surface ...

Image: Europa's blood-red scars

21 hours ago

Jupiter's moon Europa is a bizarre place. There is something undeniably biological about this image, sent back by NASA's Galileo spacecraft – the moon is scarred by deep red gashes, resembling the vibrant ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.