Dust and gas from Comet 9P/Tempel 1 seen by ESA OGS

Jul 05, 2005
Dust and gas from Comet 9P/Tempel 1 seen by ESA OGS

Dust and gas are seen in these images of Comet 9P/Tempel 1, as observed with the 1-metre ESA Optical Ground Station (OGS) telescope, located at the Observatorio del Teide on Tenerife, Canary Islands.

Image: Dust from Comet 9P/Tempel 1 seen with the ESA OGS (red filter)

Two different filters have been used in different visible light observations to study different aspects of the comet's nature. Red 'broadband' filters allowed the detection of dust, while blue 'narrowband' filters, filtering only carbon gaseous compounds, allow the observations to concentrate mainly on the gas emissions of the comet.

The first set of images (above) here were taken with a broadband red filter, four days before and about 15 hours after the impact respectively. The images were exposed for 10 minutes and show the dust coma of the comet. The dust brightness has increased by 50 percent.

A strong jet has recently appeared as a direct result of the impact, pointing north-north-east. The overall coma is very asymmetric in appearance. All structures must have been created by the outburst triggered by the impact.

Coma gas from Comet 9P/Tempel 1 seen with the ESA OGS telescope (narrowband filter)


Image above: Coma gas from Comet 9P/Tempel 1 seen with the ESA OGS telescope (narrowband filter)

The second set of images of Tempel 1 from the OGS telescope use a narrowband filter (C2 emission band). They show the coma gas mixed with smaller-sized dust particles than observed in the broadband red filtered image.

The observations were taken two days before and about 16 hours after the impact respectively. Also here the coma brightness has increased by 50 percent. Again the same strong jet is visible.

Dust from Comet 9P/Tempel 1 seen with ESA OGS (blue/red filters)


Image above: Dust from Comet 9P/Tempel 1 seen with ESA OGS (blue/red filters)

In the third set of images, Tempel 1 is seen about 16 hours after the impact. The two images show the refection of blue (BC filter) and red (RC filter) light from the dust cloud surrounding the comet nucleus.

These reflections show different dust particle sizes, with blue particles being smaller than red particles. It is clear that the jet structure of the smaller dust particles points towards the north (BC image), whereas the jet composed of larger dust particles (RC image) is rotated by about 45 degrees towards the north-east.

This means that the direction in which the dust particles were ejected from the comet nucleus after impact seems to depend on the particle size.

These images introduce ESA’s OGS telescope to the network of Earth-based observatories already taking part in the one of world’s largest astronomical observation campaigns - looking at results of the 4 July comet impact event.

Source: ESA

Explore further: NASA's Curiosity Mars rover studies rock-layer contact zone

Related Stories

Rosetta spacecraft sees sinkholes on comet

Jul 01, 2015

The European Space Agency's Rosetta spacecraft first began orbiting comet 67P/Churyumov-Gerasimenko in August 2014. Almost immediately, scientists began to wonder about several surprisingly deep, almost perfectly ...

Rosetta tracks debris around comet

Jun 23, 2015

Ever since its approach to and arrival at Comet 67P/Churyumov–Gerasimenko, Rosetta has been investigating the nucleus and its environment with a variety of instruments and techniques. One key area is the ...

MAVEN results find Mars behaving like a rock star

Jun 22, 2015

If planets had personalities, Mars would be a rock star according to recent preliminary results from NASA's MAVEN spacecraft. Mars sports a "Mohawk" of escaping atmospheric particles at its poles, "wears" ...

What is the Kuiper Belt?

Jun 17, 2015

Dr. Mike Brown is a professor of planetary astronomy at Caltech. He's best known as the man who killed Pluto, thanks to his team's discovery of Eris and other Kuiper Belt Objects. We asked him to help us ...

Recommended for you

Light echo helps researchers map out parts of galaxy

1 hour ago

Thousands of years before humans invented agriculture, a bright burst of X-rays left the dense neutron star Circinus X-1, located in the faint Southern constellation Circinus. A year and a half ago, those ...

What is a terrestrial planet?

19 hours ago

In studying our solar system over the course of many centuries, astronomers learned a great deal about the types of planets that exist in our universe. This knowledge has since expanded thanks to the discovery ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.