Building a Better Virtual Raindrop

June 26, 2005
Building a Better Virtual Raindrop

A new way of mathematically modeling the formation of rain drops in clouds may improve our understanding of Earth’s climate, cloud formation and movement, and the effect that small airborne particles have on rainfall. In a paper published online by Geophysical Research Letter the week of June 20, 2005, atmospheric physicist Yangang Liu and atmospheric chemists Peter Daum and Robert McGraw of the U.S. Department of Energy’s Brookhaven National Laboratory present a new model, which, they say, helps to overcome some of the shortfalls of previous approaches.

In the first step in the formation of raindrops, small cloud droplets combine to form larger drops in a process known as autoconversion. The mathematical representation of this process is used in simulating cloud activity and global climate patterns. But according to the Brookhaven team, the model used previously has been oversimplified and vague because some of the terms in the equation lacked a physical basis.

To address this problem, Liu and his colleagues developed a new model for autoconversion that takes into account the limited size range of droplets that interact to create raindrops. The new model also accounts for the amount of liquid water present and the concentration of droplets in a cloud. The authors assert that their model avoids guesswork by being more grounded in physics and is as easy to use as other models.

This work was funded by the Atmospheric Radiation Measurements Program and the Atmospheric Sciences Program of the Office of Biological and Environmental Research within the U.S. Department of Energy’s Office of Science.

Source: Brookhaven Lab

Explore further: Asteroids found to be the moon's main 'water supply'

Related Stories

Asteroids found to be the moon's main 'water supply'

October 1, 2015

Water reserves found on the moon are the result of asteroids acting as "delivery vehicles" and not of falling comets as was previously thought. Using computer simulation, scientists from MIPT and the RAS Geosphere Dynamics ...

Surface of the oceans affects climate more than thought

September 30, 2015

The oceans seem to produce significantly more isoprene, and consequently affect stronger the climate than previously thought. This emerges from a study by the Institute of Catalysis and Environment in Lyon (IRCELYON, CNRS ...

Jupiter's moon Europa

September 30, 2015

Jupiter's four largest moons – aka. the Galilean moons, consisting of Io, Europa, Ganymede and Callisto – are nothing if not fascinating. Ever since their discovery over four centuries ago, these moons have been a source ...

Recommended for you

Horn of Africa drying ever faster as climate warms

October 9, 2015

The Horn of Africa has become increasingly arid in sync with the global and regional warming of the last century and at a rate unprecedented in the last 2,000 years, according to new research led by a University of Arizona ...

Scientists paint quantum electronics with beams of light

October 9, 2015

A team of scientists from the University of Chicago and the Pennsylvania State University have accidentally discovered a new way of using light to draw and erase quantum-mechanical circuits in a unique class of materials ...

A better way to read the genome

October 9, 2015

UConn researchers have sequenced the RNA of the most complicated gene known in nature, using a hand-held sequencer no bigger than a cell phone.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.