The Unusual Origin of Peacock Brown

June 28, 2005

Many animals' colors originate from photonic crystals, which reflect specific colors of light as a result of their nanoscopic structures, rather than from pigments, which derive their colors from their chemical composition. The brown in peacocks' tails is a particularly unusual type of photonic crystal coloration, according to research soon to appear in the journal Physical Review E.

Brown is a mixture of light of different colors. Generally, photonic crystals in animal coloring produce pure colors, such as blue, green, yellow or violet. Nevertheless, researchers at Fudan University in Shanghai have found that the brown in peacocks' feathers is indeed due to microscopic structure. The researchers' experiments and analysis show that peacocks' brown microstructures are a good deal more complex than most natural photonic crystals.

Mimicking the photonic crystals in peacock tail feathers could lead to new ways to manipulate light in cutting edge optical instruments. In addition, the discovery points the way to new paints and coatings that are not susceptible to the chemical changes that can degrade pigments over time.

Publication: Y. Li et al., Physical Review E, Forthcoming article

Source: American Physical Society

Explore further: Plasmonics study suggests how to maximize production of 'hot electrons' for cheap, efficient metal-based solar cells

Related Stories

Weyl points: Long-sought phenomenon finally detected

July 16, 2015

Part of a 1929 prediction by physicist Hermann Weyl—of a kind of massless particle that features a singular point in its energy spectrum called the "Weyl point,"—has finally been confirmed by direct observation for the ...

Trapped light orbits within an intriguing material

July 16, 2015

Light becomes trapped as it orbits within tiny granules of a crystalline material that has increasingly intrigued physicists, a team led by University of California, San Diego, physics professor Michael Fogler has found.

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.