'Supersolid' or melted 'superfluid' film: A quantum difference

June 16, 2005

New calculations support an alternative to "superfluidity" of a solid as the explanation for the behavior of an isotope of helium, 4He, at temperatures approaching Absolute Zero, according to a report in Physical Review Letters.

Among the most provocative recent reports in condensed materials science were studies interpreting the behavior of solid 4He in an oscillating chamber as a "supersolid." In this current paper, John S. Wettlaufer, professor of geophysics andphysics at Yale University, and his colleague J. G. Dash, emeritus professor of physics at University of Washington, offer another possible explanation.

"If you rotate a container of nearly-frozen liquid 4He, even gently, it does unusual things -- hydrodynamically," said Wettlaufer. Superfluidity has long been shown to occur as liquid 4He is cooled to within two degrees of Absolute Zero. In this state, the liquid can flow without any resistance; rotating in a container it can continue without slowing, as long as it is kept at the low temperature. The state is an effect of quantum physics known as Bose-Einstein condensation (BEC).

The possibility of BEC in solid 4He was a theoretical speculation for many years, so the reports of Professor Moses Chan and his student E.-S. Kim at Penn State seemed to be the hoped for experimental validation.

However, Wettlaufer and Dash explain the observations differently. Their calculations show that even at temperatures below the freezing point of 4He, the boundary between solid 4He and the container is not frozen. They say that, instead, there is a thin lubricating superfluid film between the solid and its container.

The film is caused by melting at the boundary of the two solids, an effect that occurs in all solids. In ice, for example, interface melting influences the flow of glaciers, and causes frost heave in frozen ground.

Although the alternative explanation rejects the supersolid, it suggests a new and challenging study of superfluidity in a region of pressure and temperature that has not been accessible otherwise.

Related work in Wettlaufer's group on thermodynamic and surface effects focuses on glycoproteins found in the blood of organisms that live at temperatures where most living things would be frozen. This research was supported by the National Science Foundation, the Bosack and Kruger Foundation and Yale University.

Related link: Physics at Yale University

Source: Yale University

Related Stories

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.