Scientists Find Possible Titan Volcano

June 8, 2005
Scientists Find Possible Titan Volcano

A recent flyby of Saturn's hazy moon Titan by the Cassini spacecraft has revealed evidence of a possible volcano, which could be a source of methane in Titan's atmosphere.
Images taken in infrared light show a circular feature roughly 30 kilometers (19 miles) in diameter that does not resemble any features seen on Saturn's other icy moons. Scientists interpret the feature as an "ice volcano," a dome formed by upwelling icy plumes that release methane into Titan's atmosphere. The findings appear in the June 9 issue of Nature.

Image: A recent flyby of Saturn's hazy moon Titan by the Cassini spacecraft has revealed evidence of a possible volcano.

"Before Cassini-Huygens, the most widely accepted explanation for the presence of methane in Titan's atmosphere was the presence of a methane-rich hydrocarbon ocean," said Dr. Christophe Sotin, distinguished visiting scientist at NASA's Jet Propulsion Laboratory, Pasadena, Calif.

"The suite of instruments onboard Cassini and the observations at the Huygens landing site reveal that a global ocean is not present," said Sotin, a team member of the Cassini visual and infrared mapping spectrometer instrument and professor at the Université de Nantes, France.

"Interpreting this feature as a cryovolcano provides an alternative explanation for the presence of methane in Titan's atmosphere. Such an interpretation is supported by models of Titan's evolution," Sotin said.

Titan, Saturn's largest moon, is the only known moon to have a significant atmosphere, composed primarily of nitrogen, with 2 to 3 percent methane. One goal of the Cassini mission is to find an explanation for what is replenishing and maintaining this atmosphere. This dense atmosphere makes the surface very difficult to study with visible-light cameras, but infrared instruments like the visual and infrared mapping spectrometer can peer through the haze. Infrared images provide information about both the composition and the shape of the area studied.

The highest resolution image obtained by the visual and infrared mapping spectrometer instrument covers an area 150 kilometers square (90 miles) that includes a bright circular feature about 30 kilometers (19 miles) in diameter, with two elongated wings extending westward. This structure resembles volcanoes on Earth and Venus, with overlapping layers of material from a series of flows.

“We all thought volcanoes had to exist on Titan, and now we’ve found the most convincing evidence to date. This is exactly what we've been looking for," said Dr. Bonnie Buratti, team member of the Cassini visual and infrared mapping spectrometer at JPL.

In the center of the area, scientists clearly see a dark feature that resembles a caldera, a bowl-shaped structure formed above chambers of molten material. The material erupting from the volcano might be a methane-water ice mixture combined with other ices and hydrocarbons. Energy from an internal heat source may cause these materials to upwell and vaporize as they reach the surface. Future Titan flybys will help determine whether tidal forces can generate enough heat to drive the volcano, or whether some other energy source must be present. Black channels seen by the European Space Agency's Huygens probe, which piggybacked on Cassini and landed on Titan's surface in January 2005, could have been formed by erosion from liquid methane rains following the eruptions.

Scientists have considered other explanations. They say the feature cannot be a cloud because it does not appear to move and it is the wrong composition. Another alternative is that an accumulation of solid particles was transported by gas or liquid, similar to sand dunes on Earth. But the shape and wind patterns don't match those normally seen in sand dunes.

The data for these findings are from Cassini's first targeted flyby of Titan on Oct. 26, 2004, at a distance of 1,200 kilometers (750 miles) from the moon's surface.

The visual and infrared mapping spectrometer instrument can detect 352 wavelengths of light from 0.35 to 5.1 micrometers. It measures the intensities of individual wavelengths and uses the data to infer the composition and other properties of the object that emitted the light; each chemical has a unique spectral signature that can be identified.

Forty-five flybys of Titan are planned during Cassini's four-year prime mission. The next one is Aug. 22, 2005. Radar data of the same sites observed by the visual and infrared mapping spectrometer may provide additional information.

More about the Cassini-Huygens mission at
The visual and infrared mapping spectrometer page is at

Source: NASA

Explore further: Cassini finds monstrous ice cloud in Titan's south polar region

Related Stories

Cassini gets new views of Titan's land of lakes

October 24, 2013

( —With the sun now shining down over the north pole of Saturn's moon Titan, a little luck with the weather, and trajectories that put the spacecraft into optimal viewing positions, NASA's Cassini spacecraft has ...

The many moods of Titan

February 23, 2012

( -- A set of recent papers, many of which draw on data from NASA's Cassini spacecraft, reveal new details in the emerging picture of how Saturn's moon Titan shifts with the seasons and even throughout the day. ...

Titan shines in latest Cassini shots

December 3, 2012

Last Thursday, November 29, Cassini sailed past Titan for yet another close encounter, coming within 1,014 kilometers (603 miles) of the cloud-covered moon in order to investigate its thick, complex atmosphere. Cassini's ...

Titan's methane: Going, going, soon to be gone?

April 16, 2013

( —By tracking a part of the surface of Saturn's moon Titan over several years, NASA's Cassini mission has found a remarkable longevity to the hydrocarbon lakes on the moon's surface.

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

A blue, neptune-size exoplanet around a red dwarf star

November 25, 2015

A team of astronomers have used the LCOGT network to detect light scattered by tiny particles (called Rayleigh scattering), through the atmosphere of a Neptune-size transiting exoplanet. This suggests a blue sky on this world ...

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.