Methane doesn't necessarily mean life on Mars

June 7, 2005

Two Dartmouth researchers have weighed in on the debate over whether the presence of methane gas on Mars indicates life on the red planet. Mukul Sharma, Assistant Professor of Earth Sciences, and Chris Oze, a postdoctoral fellow, argue that the Martian methane could have been produced by inorganic processes just as easily as by bacteria.

In their paper published online in May in the American Geophysical Union's journal, Geophysical Research Letters, Sharma and Oze describe how methane on Mars can be made from abiotic, or non-living, sources. When water containing dissolved carbon dioxide comes in contact with olivine, it produces hydrogen, which then combines with carbon dioxide to produce methane. The authors contend that olivine is abundant on Mars at shallow depths, and it could easily react with fluids just beneath the surface.

"Most methane on Earth is produced by bacteria, and methane has been cited as an indicator of life on other planets," explains Sharma. "However, we show in our paper that the mineral olivine can be altered in the presence of water and carbon dioxide, which can produce copious quantities of methane. It's quite easy to do, and there is nothing bacterial about it. If there is life on Mars, I would like to see better evidence than methane."

The paper also provides a plausible explanation for a warmer and wetter early Mars. Recent results from rover missions on Mars have pointed to the presence of flowing water on the planet's surface. It is, however, impossible to heat the planet's surface to above freezing temperatures by greenhouse action of carbon dioxide alone. The authors estimate that the abiotic creation of methane via the altered olivine was very efficient due to a higher surface heat flow and more intense hydrothermal circulation. Sharma and Oze say that methane, a very effective greenhouse gas, would have been more abundant in the atmosphere resulting in a climate that was warm enough to allow liquid water to be present on the Martian surface.

Source: Dartmouth College

Explore further: Mars missions: Past, Present and Future

Related Stories

Mars missions: Past, Present and Future

October 18, 2016

Long before the space age, Earthlings were already in hot pursuit of life on Mars, using primitive telescopes and even psychic mediums to seek evidence of sentient beings.

Europe heads for Mars in search of life

October 14, 2016

Thirteen years after its first, failed attempt to place a rover on Mars, Europe reaches a crucial stage Sunday in a fresh quest to scour the Red Planet for signs of life, this time with Russia.

Recommended for you

Science: Public interest high, literacy stable

October 28, 2016

While public interest in science continues to grow, the level of U.S. scientific literacy remains largely unchanged, according to a survey by the University of Michigan Institute for Social Research.

Shocks in the early universe could be detectable today

October 27, 2016

(—Physicists have discovered a surprising consequence of a widely supported model of the early universe: according to the model, tiny cosmological perturbations produced shocks in the radiation fluid just a fraction ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.