Highly stable foams by the attachment of silica nanoparticles to bubble surfaces

June 20, 2005

What do a glass of beer, whipped cream, dish-washing detergent, shampoo and foam sealant have in common? They should foam properly. Foams are gas bubbles confined by fluid or solid boundaries. Whereas solid foams are quite stable (foam rubber and whipped cream, for example), most fluid foams quickly collapse: if a beer is left to stand too long, the head eventually disappears; in a similar manner, the best part of a bubble-bath is over. To stabilize foams, surface-active reagents or proteins are generally used. British researchers have developed foam stabilizers that are more effective: highly disperse silica nanoparticles.

Why do foams collapse? The fluid surrounding the gas bubbles slowly flows downward and partially evaporates. As a result, the lamellae between vesicles becomes thinner and thinner. The bubbles at the surface eventually burst, other bubbles fuse, and small bubbles shrink in favor of larger ones. Bernard Binks and Tommy Horozov discovered that miniscule silica nanoparticles can counteract this effect.

The particles attach themselves to the surfaces of the small bubbles. Standard surface-active reagents do this as well, but nanoparticles differ in that they do not detach from the bubble surface. The secret to the success of the nanoparticles is their finely balanced hydrophobicity. This can be controlled by the manner in which the hydrophilic silica nanoparticles are purposefully covered with a water-repellent layer. The more hydrophobic the particles become, the more firmly they press themselves into the air-bubble surface. The nanoparticles cannot be completely hydrophobic, however, as this would impede their hydration by water altogether. Silica particles work best with intermediate hydrophobicity.

Under the microscope, bubble surfaces appear corrugated. The bubbles are covered with a closely packed layer of particles. It is possible that such stable bubbles are formed by the fusing of smaller bubbles, which themselves are not as well-covered with particles. As a given volume defined by many small bubbles has a larger surface area than the same volume in fewer, larger bubbles, the process of bubble fusion eventually creates the appropriate available space for the nanoparticles. As the particles cannot become detached, they move ever closer together, and the surface corrugates. The closely packed nanoparticles protect the air bubbles from collapse, and thus stabilize the foam.

Link: Angewandte Chemie International Edition

Source: John Wiley & Sons, Inc.

Explore further: Bubbling down: Discovery suggests surprising uses for common bubbles

Related Stories

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Earth flyby of 'space peanut' captured in new video

July 31, 2015

NASA scientists have used two giant, Earth-based radio telescopes to bounce radar signals off a passing asteroid and produce images of the peanut-shaped body as it approached close to Earth this past weekend.

Image: Hubble sees a dying star's final moments

July 31, 2015

A dying star's final moments are captured in this image from the NASA/ESA Hubble Space Telescope. The death throes of this star may only last mere moments on a cosmological timescale, but this star's demise is still quite ...

Exoplanets 20/20: Looking back to the future

July 31, 2015

Geoff Marcy remembers the hair standing up on the back of his neck. Paul Butler remembers being dead tired. The two men had just made history: the first confirmation of a planet orbiting another star.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.