Einstein's Relativity Theory 'Holding Up' After 100 Years, But Facing 'Competing Theories,' Duke Professor Says

Jun 28, 2005
Albert Einstein

This Thursday, June 30, marks the centennial of Albert Einstein’s first paper on the theory of relativity.
Over the last 100 years, relativity has been vindicated in numerous experiments and technological applications, said a Duke University astrophysicist and mathematician. But it has barely affected the way most people understand the universe and is still being challenged by some scientists.

“Over the past century, relativity theory has been holding up quite well,” said Arlie Petters, who develops mathematics to describe the intricate ways that light is warped by massive objects in space, a prediction of relativity theory. “However, we must bear in mind that it took over two centuries before serious problems were found with Newtonian theory.”

Petters, a professor of mathematics and physics, is a co-author of the book “Singularity Theory and Gravitational Lensing.”

“There are still many tests ahead for relativity, especially those pertaining to gravitational waves and the extreme warping of space-time in the vicinity of black holes,” said Petters, who is preparing a paper that gives scientists mathematical tools for performing experiments to test relativity. “And, of course, there is a host of competing theories of gravity hoping to dethrone relativity.”

Space-time is the term for Einstein’s concept that space and time are interrelated phenomena. Gravitational waves are ripples in space-time produced by extreme cosmological events -- analogous to dropping a large rock on a pond.

However, relativity still predominates among scientific theories of space, time, light and gravity on macroscopic scales, Petters said. It has accurately predicted phenomena such as the exact orbit of the planet Mercury, the slight bending of starlight passing the sun and other cosmic observations. In fact, equations from relativity are essential for a now-common technology: the global positioning systems used in cell phones, electronic road maps and nautical navigation instruments.

Petters said relativity has been least successful, perhaps, in replacing in the public mind Isaac Newton’s conceptions of space and time as being absolutely fixed, and of gravity as an attractive force exerted by objects. But that’s understandable, he said. “It is nontrivial to switch to the General Relativistic viewpoint, namely, to think of gravity not as a physical force, but as the result of the warping of space-time.”

A profile of Petters is available at www.dukemagazine.duke.edu/alumni/dm22/star.html

Source: Duke University

Explore further: Scientists one step closer to mimicking gamma-ray bursts

Related Stories

Dedication of Advanced LIGO

May 19, 2015

The Advanced LIGO Project, a major upgrade that will increase the sensitivity of the Laser Interferometer Gravitational-wave Observatories instruments by a factor of 10 and provide a 1,000-fold increase in the number of astrophysical ...

Hitting the borders of expansion

May 05, 2015

Why does a species not adapt to an ever-wider range of conditions, gradually expanding its geographical range? In their paper published on May 5 in PNAS (Proceedings of the National Academy of Sciences), Jitka Polecho ...

Recommended for you

Physicists solve quantum tunneling mystery

4 hours ago

An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process.

How spacetime is built by quantum entanglement

4 hours ago

A collaboration of physicists and a mathematician has made a significant step toward unifying general relativity and quantum mechanics by explaining how spacetime emerges from quantum entanglement in a more ...

Experiment confirms quantum theory weirdness

4 hours ago

The bizarre nature of reality as laid out by quantum theory has survived another test, with scientists performing a famous experiment and proving that reality does not exist until it is measured.

Quantum computer emulated by a classical system

5 hours ago

(Phys.org)—Quantum computers are inherently different from their classical counterparts because they involve quantum phenomena, such as superposition and entanglement, which do not exist in classical digital ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Apr 22, 2009
The main of Einstein Year, 2005, was to popularize physics. As Einstein's GR originates in the logical incompleteness of Newton's laws of motion and as there are global and chronic problems in learning Newtonian mechanics, the question is: Have we completely understood the logical incompleteness of Newton's laws of motion?
1 / 5 (1) Jul 15, 2009
"to think of gravity not as a physical force, but as the result of the warping of space-time."

Then why do we need boojums like the Higgs boson?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.