Deep sea algae connect ancient climate, carbon dioxide and vegetation

Jun 22, 2005

Assistant Professor Mark Pagani in the Department of Geology and Geophysics at Yale and his colleagues mapped the first detailed history of atmospheric carbon dioxide between 45 - 25 million years ago based on stable isotopes of carbon in a National Science Foundation study reported in Science Express.

"Through the energy we consume, each of us makes a contribution to increasing greenhouse gasses, such as carbon dioxide and methane, in the Earth's atmosphere," said Pagani. "To understand the implications of these actions for the future, scientists look to the past to gain a better understanding of Earth's climate system under high greenhouse gas conditions." The findings were based on calibration of carbon-containing compounds produced by ancient sea surface algae that were recently isolated in deep sea drill cores.

The data indicates that between 45 - 34 million years ago the atmospheric carbon dioxide level was up to five times greater than today, with a sharp decrease and then stabilization to near modern day levels between 34 - 25 million years ago.

During the early part of the Paleogene Period, from 65 - 34 million years ago, global climates were much warmer than today with very little ice present at the poles. The boundary of the Oligocene and Eocene Epochs 33.7 million years ago was marked by rapid global cooling and the formation of large continental ice sheets on the Antarctic.

"Before this study, the relationship between the global climate and the concentration of carbon dioxide in the atmosphere during the late Eocene and Oligocene was largely unknown," said Pagani, who is recognized for his reconstruction of past atmospheric carbon dioxide levels between 25 million and eight million years ago.

They also present intriguing evidence that the sharp drop in carbon dioxide level, between 33 - 25 million years ago, prompted the origin of economically important land plants that are sensitive to atmospheric carbon dioxide levels, such as corn and sugarcane.

"The onset and stabilization of ice sheets at the same time as a decline in carbon dioxide illustrates the importance of atmospheric carbon dioxide as an agent of both climate and biological change," Pagani said.

Collaborators were Brett Tipple from Yale, James C. Zachos and Stephen Bohaty at University of California, Santa Cruz and Katherine Freeman at Pennsylvania State.

Citation: Science Express on line (June 16, 2005).

Source: Yale University

Explore further: Global roadmap for better understanding space weather released

Related Stories

Fuel and chemicals from steel plant exhaust gases

Jul 01, 2015

Carbon monoxide-rich exhaust gases from steel plants are only being reclaimed to a minor extent as power or heat. Fraunhofer researchers have developed a new recycling process for this materially unused carbon resource: They ...

What is the habitable zone?

Jun 30, 2015

The weather in your hometown is downright uninhabitable. There's scorching heatwaves, annual tyhpoonic deluges, and snow deep enough to bury a corn silo.

New study re-writes the rules of carbon analysis

Jun 30, 2015

A new study published today in Nature Climate Change has found analyses of carbon emissions may be misleading as they failed to include the impacts of policies such as trading schemes, emission caps or quo ...

Recommended for you

Uranus' moon Titania

16 hours ago

Like all of the Solar Systems' gas giants, Uranus has an extensive system of moons. In fact, astronomers can now account for 27 moons in orbit around Uranus. Of these, none are greater in size, mass, or surface ...

Image: Europa's blood-red scars

16 hours ago

Jupiter's moon Europa is a bizarre place. There is something undeniably biological about this image, sent back by NASA's Galileo spacecraft – the moon is scarred by deep red gashes, resembling the vibrant ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.