Shining a Brighter Light

June 14, 2005

New lighting technology developed at UC Davis offers quality, cost and environmental benefits compared with existing types of lighting, according to Charles E. Hunt, professor of electrical and computer engineering.
Field emission lamps can match exactly the spectrum of natural daylight, Hunt said. They are up to five times more energy efficient than existing R- and PAR-type lamps and do not contain environmentally hazardous materials, such as the mercury vapor used in fluorescent tubes, he said. They are cheaper and can produce a wider variety of colors than light-emitting diodes (LEDs).

The technology could be used for indoor and outdoor area lighting, specialty applications such as film and video production, and for illuminated displays, traffic signals or technical lighting.

Field emission lamps are based on the same principle as the luminescent phosphor materials used in TV sets. Light is emitted when electrons are driven into the material. Traditional TV sets use a thermal electron gun to fire electrons into a phosphor screen. The new field emission devices use a powerful electric field to extract electrons from the cathode and drive them into the phosphor, which are located close together. The process is dramatically more efficient than the filaments used in electron guns.

"It combines 70-year-old vacuum tube technology with the latest advances in carbon nanomaterials," said Andrei Chakhovskoi, co-inventor of the device.

The UC Davis laboratory has developed materials for field emission cathodes that are inexpensive and simple to make. Lamps based on the material should have a lifetime of up to 30,000 hours, Hunt estimates.

Hunt's group is working with the California Lighting Technology Center at UC Davis and the California Energy Commission on potential applications. The technology is based on inventions at UC Davis and on a collection of patents and intellectual property donated to UC Davis in 2004 by DuPont Corporation. The university is currently negotiating agreements to license the technology for commercial development.

Source: UC Davis

Explore further: How photonics can reshape the spectrum of light, and rehabilitate Edison's light bulb along the way

Related Stories

Nanocarriers may carry new hope for brain cancer therapy

November 19, 2015

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into surrounding tissue, is virtually inoperable, resistant to therapies, ...

Recommended for you

Ocean acidification makes coralline algae less robust

February 8, 2016

Ocean acidification (the ongoing decrease in the pH of the Earth's oceans, caused by the uptake of CO2 from the atmosphere), is affecting the formation of the skeleton of coralline algae which play an important part in marine ...

Physicists discover new properties of superconductivity

February 4, 2016

New findings from an international collaboration led by Canadian scientists may eventually lead to a theory of how superconductivity initiates at the atomic level, a key step in understanding how to harness the potential ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.